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Onset of spurious mesh dependence
Reference: Tensile test with different element sizes

Triaxiality 1/3 up to necking point

diffuse 

necking

*MAT_024 + GISSMO (without regularization), monotonic hardening curve
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Onset of spurious mesh dependence
Reference: Tensile test with different element sizes

Triaxiality 1/3 up to necking point

*MAT_024 + GISSMO (without regularization), monotonic hardening curve

0.5mm        1mm       2.5mm       5mm

diffuse 

necking
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Mesh dependence
Different types

Geometrical mesh dependence “Spurious” mesh dependence

▪ A consequence of discretization using finite elements

▪ May affect solution under any loading 

(purely elastic, plastic, etc.)

▪ Generally converging when mesh is fine 

enough → can be solved by refining

or higher order elements

▪ Shells and solids affected in a similar way

▪ A consequence of local continuum mechanics

▪ Only affects solution under certain conditions (e.g., 

after the necking point under a uniaxial stress state)

▪ Generally non-converging regardless how fine the 

mesh is → cannot be solved by refining

▪ Shells generally exhibit more spurious mesh 

dependence than solids

Regularization strategies are intended to tackle the spurious kind of mesh dependence

The expression “mesh dependence” is somewhat vague and can as such have different interpretations.

Therefore, it is important to highlight the main differences between the typical interpretations of this term.

Ideally, only geometrically converged models should be regularized
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Onset of spurious mesh dependence
Triaxialities other than 1/3

▪ Idea: Use other specimen geometries,

discretize with varying element size

▪ Disadvantages:

▪ Generally non-homogeneous deformation right from 

the beginning of deformation

▪ Bad geometric description for large element sizes

(geometric mesh dependence)

▪ Goal: Homogeneous deformation up to necking

for any arbitrary stress state
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Plane stress (shell elements)
How to keep the triaxiality constant throughout deformation

X

Y

Strain ratio

Triaxiality as a function of 

the stress ratio

Stress ratio as a function 

of the triaxiality

Stress ratio

Assumptions/conditions:

■ Plane stress

■ Negligible elastic strains

■ J2 elastoplasticity (von Mises)

■ Proportional loading (within the increment)

■ Works well for triax > – 0.5

𝑎 = 𝑓(𝜂)
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Plane stress (shell elements)
How to keep the triaxiality constant throughout deformation
Single element simulation under different triaxialities
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Plane stress (shell elements)
Automatic generation of “element blocks” through an external program

$ ./thewall

***************************************************

T H E  W A L L

--------------

Build a wall of elements.

An LS-DYNA input file for different triaxialities

is generated. The aspect ratio and the element

size can be specified.

F. Andrade  

Jan 2019  

***************************************************

Usage:

------

thewall <width> <height> <el size>

Default values:

---------------

width           = 1.0

height          = 1.0

element size    = 1.0

Example: ./thewall 10 20 1

width height element size

input.key

A different triaxiality is assigned to each element block
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Plane stress (shell elements)
Simulation of the element blocks (width=5mm, height=20mm, element size=1.0mm)

Simulation with *MAT_024, monotonic hardening curve, aluminum properties,

failure strain = 2.0 for all triaxialities

h = 0

(shear)
h = 1/3

(uniaxial tension)

h ≈ 2/3

(nearly equibiaxial tension)
h ≈ 1/√3

(“plane strain”)
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Plane stress (shell elements)
Behavior for triaxiality 1/3 (width=5mm, height=20mm, element size=0.25mm)

Localization takes place much latter 

than necking strain from the tensile test

necking strain

from the 

tensile test

Element failure 

when epsp = 2.0

Lateral displacement identical for all nodes

until failure at epsp = 2.0
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Plane stress (shell elements)
Imposing lateral forces instead of displacements

reaction forces from the 

displacement-driven simulation
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Plane stress (shell elements)
Simulation of the element blocks (width=5mm, height=20mm, element size=1.0mm)

Simulation with *MAT_024, monotonic hardening curve, aluminum properties,

failure strain = 2.0 for all triaxialities

h = 0

(shear) h = 1/3

(uniaxial tension)

h ≈ 2/3

(nearly equibiaxial

tension)
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Plane stress (shell elements)
Strain-triaxiality paths (width=5mm, height=40mm, element size=0.5mm)

diffuse necking 

strain at triax=1/3

Swift (1952)

Simulation with *MAT_024, monotonic hardening curve, 

aluminum properties, failure strain = 2.0 for all triaxialities
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Plane stress (shell elements)
Vertical reaction force vs time (width=5mm, height=40mm, el. size=0.25mm – 2.5mm) 

Le=0.25mm

Le=0.5mm

Le=1.0mm

Le=2.5mmh=0.0 h=0.03 h=0.07 h=0.1 h=0.14

h=0.17 h=0.22 h=0.25 h=0.29 h=1/3

h=0.36 h=0.4 h=0.43 h=0.47 h=0.5

h=0.54 h=0.58 h=0.6 h=0.63 h=0.65

Simulation with *MAT_024, monotonic hardening curve, aluminum properties, failure strain = 2.0 for all triaxialities
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Three-dimensional case (volume elements)
How to keep triaxiality and Lode parameter constant throughout deformation

Strain components Stress ratio values

Triaxiality as a function of the stress ratio values

Lode parameter as a function of the stress ratio values

Assumptions/conditions for solids:

■ Linear elasticity

■ J2 elastoplasticity (von Mises)

■ Proportional loading (within the increment)
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Constant triaxiality and Lode parameter throughout deformation

Triaxiality

Three-dimensional case (volume elements)

Simulation with *MAT_024, monotonic hardening curve, no failure
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Three-dimensional case (volume elements)

$ ./thewall3d

***************************************************

T H E  W A L L - 3 D

--------------------

Build a 3D wall of elements.

An LS-DYNA input file for different triaxialities

is generated. The aspect ratio and the element

size can be specified.

F. Andrade  

Mar 2019  

***************************************************

Usage:

------

thewall3d <width> <height> <thickness> <el size>

Default values:

---------------

width           = 1.0

height          = 1.0

thickness       = 1.0

element size    = 1.0

Automatic generation of “element blocks” through an external program

Example: ./thewall 10 20 2 0.5

width height element size

input.key

thickness
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Three-dimensional case (volume elements)
Simulation of the element blocks (w=5mm, h=40mm, t=2mm, el. size=0.5mm)

Lode = 1.0 Lode = 0.5

h = 0

h = 1

Simulation with *MAT_024, monotonic hardening curve, aluminum properties,

failure strain = 2.0 for all triaxialities
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Three-dimensional case (volume elements)
Simulation of the element blocks (w=5mm, h=40mm, t=2mm, el. size=0.5mm)

Lode = -1.0Lode = 0.0

h = 0

(shear)

Simulation with *MAT_024, monotonic hardening curve, aluminum properties,

failure strain = 2.0 for all triaxialities
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Three-dimensional case (volume elements)
Evaluation of the element blocks (w=5mm, h=40mm, t=2mm, el. size=0.5mm)

May 9, 2019: First visualization of the instability surface

Lode = 1.0 Lode = 0.5

Lode = 0.0 Lode = -0.5

Lode = -1.0
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Four different materials
Stainless steel, dual-phase steel, aluminum extrusion, soft material 

Necking strain from tensile test

E=150 MPa, n=0.01

E=70 GPa, n=0.3

E=210 GPa, n=0.3

E=210 GPa, n=0.3
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Eng. Strain

Stainless steel

DP800

Aluminum

Soft material



© 2022 DYNAmore GmbHInstability and Mesh Dependence Part II – October 2022 | public Slide 22 of 28

Dualphase steel (DP800) –– Swift 3D

–– GBC

–– LPBC 

Lode = 1.0 Lode = 0.5 Lode = 0.0

Lode = -0.5 Lode = -1.0 Plane stress

Comparison between simulation and analytical prediction
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Stainless steel –– Swift 3D

–– GBC

–– LPBC 

Lode = 1.0 Lode = 0.5 Lode = 0.0

Lode = -0.5 Lode = -1.0 Plane stress

Comparison between simulation and analytical prediction
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Aluminum extrusion –– Swift 3D

–– GBC

–– LPBC 

Lode = 1.0 Lode = 0.5 Lode = 0.0

Lode = -0.5 Lode = -1.0 Plane stress

Comparison between simulation and analytical prediction
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Soft material (E = 150 MPa, n = 0.01) –– Swift 3D

–– GBC

–– LPBC 

Lode = 1.0 Lode = 0.5 Lode = 0.0

Lode = -0.5 Lode = -1.0 Plane stress

Comparison between simulation and analytical prediction
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Soft material –– Swift 3D

–– GBC

–– LPBC 

Lode = 1.0

Comparison between simulation and analytical prediction

Plane stress
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Conclusions and final remarks

▪ “What the hell is ECRIT?”

For the Jaumman stress rate and J2 elastoplasticity (e.g., *MAT_024 in LS-DYNA):

→ It’s LPBC, GBC or Swift if dealing with metallic materials

→ It seems to be LPBC for very soft materials

▪ The element block simulations can be used as a tool for the regularization as a function 

of the triaxiality and Lode parameter (SHRF and BIAXF flags often not enough in practical applications)

▪ Why is all this relevant?

▪ Better understanding of mesh dependence, necking

▪ Better understanding of unconventional stress states

▪ New options in GISSMO (e.g., INSTF)

▪ Direct application in practice, for instance, for the correct mapping from forming to crash

as well as enhanced regularized failure modeling in crash simulations
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