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A day in the life of a consultant

Paul, I am 

creating a 

GISSMO card, 

what do I put for 

ECRIT?

euhh….

well…..

In the uniaxial

case it is the 

plastic strain at 

necking…
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GISSMO and ECRIT

▪ GISSMO requires the definition of an ECRIT curve (shells) or an ECRIT surface (solids) to 

define the ‘start of instability’   

▪ For us that always meant the ‘start of mesh dependency’

▪ The point on the ECRIT curve corresponding to uniaxial tension indicates the start of diffuse 

necking and this point is very well known, under general plane stress or full 3D loading 

conditions this is not the case

▪ Intuitively, ECRIT is the locus where

▪ we lose the homogeneous state of stress/strain  

▪ localisation of plastic strain starts 

▪ structural instability is detected

▪ spurious mesh dependency is detected in the numerical simulations

▪ In the case of uniaxial tension all these events are known to coincide at the moment of 

maximum force
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Diffuse and localized necking

• Start of diffuse necking

• Loss of homogeneous state 

of stress/strain

• Start of structural instability

• Start of localization of 

plastic strain

• Moment of maximum force

• Start of mesh dependency

Uniaxial tension

diffuse necking localized necking
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What we’ve known for a long time

• Start of diffuse necking

• Loss of homogeneous state 

of stress/strain

• Start of structural instability

• Start of localization 

of plastic strain

• Moment of maximum force

• Start of mesh dependency

Spurious mesh dependence observed in simulations

Concentration in a single element band is within the local continuum theory eventually unavoidable 

Significant differences in local plastic strain at the same global displacement
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All kinds of structural instabilities 
Only diffuse necking happens in both 2D and 3D states of stress

In general, two effects may be distinguished in

uniaxial tension in thin metal sheets:

A) Diffuse necking: 

Onset of formation of non-uniform strains. 

Usually, this is the point of maximum load 

in the force-displacement diagram.

B) Localized necking:

This is understood as the point when strain 

localizes a narrow band of constant width 

causing pronounced thinning and leading 

the coupon to failure

A

B
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2D and 3D instability criteria
State of the art (Abed-Meraim et al., 2014, Bouktir, 2017)

Engineering criteria  (1D-2D) Loss of uniqueness and bifurcation criteria  (2D-3D)

Necking type Remark

Hill’52 Localized Ratio of strain rates 

inside/outside loc. band

Hora Localized Maximum Force of major load

component

Considère Diffuse     1D Maximum Force in uniaxial case

Swift Diffuse     2D Maximum Force in two

directions

MK Localized Imperfection criterion

HN Localized Imperfection criterion

Keeler Localized Empirical

Necking type Remark

General Bifurcation Diffuse Second order work

Limit-Point Bifurcation Diffuse Stationary stress state

Loss of Strong Ellipticity Localized Discontinuity; Symm. Acoustic

tensor

Loss of Ellipticity Localized Discontinuity, Acoustic tensor
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The concept… Koblenz, May 15th 2019

Paul, can you quickly 

derive a 3D version of the 

plane stress Swift criterion?

Sure, give me a day or 

two
Hmmm….maybe 

we need 

something more 

rigorous?
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Like many other things it starts with 
Sir Rodney Hill (11/6/1921-2/2/2011)

▪ The uniqueness criterion of 

Sir Rodney was based on the stiffness 

matrix which couples the rate of the nominal 

stress to the transposed of the velocity 

gradient

▪ This is a global criterion and the loss of 

uniqueness is a function of the material law, 

geometry and boundary conditions… we 

should always keep this in mind

▪ Implementation at the level of the integration 

point will force us to use a local version of 

the uniqueness criterion (no integral)
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Molding the material law a bit

▪ We start from the usual incremental elasto-plastic material law with the Jaumann rate:

▪ And recall the definition of the 1PK stress and its transposed called the nominal stress:

▪ In Hill 1958 the material law is reformulated in terms of the rate of the nominal stress and 

the transposed of the velocity gradient, D is a 4th order stiffness tensor:

▪ But there are also other possibilities that one finds in the literature 
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4 variants of the material law

▪ At least 4 variants are found in modern literature:

▪ With some obvious relationships between the components of the 4th order stiffness tensors

▪ No wonder it gets confusing out there

▪ We have chosen to work primarily with the formulation in the 1PK and the velocity gradient

Energy conjugate

in Lagrangean configuration

but not in updated

Lagrangean configuration
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A change of notation

▪ Recall the relationship between the rate of the 1PK and velocity gradient and remember 

that both of these are neither tensors nor symmetric:

▪ We can write this equivalently using 9-by-1 column matrices for P and L and a 9-by-9 matrix 

for the fourth order stiffness tensor:

▪ Note that this is NOT classical Voigt notation as no symmetry is exploited

▪ The double contractions now become simple matrix products
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The General Bifurcation Criterion (GBC)

▪ The local formulation of Hill’s criterion requires the second order work to be positive everywhere:

▪ For elastic/elasto-plastic materials the deviation from an equilibrium state can be replaced by an arbitrary 

velocity field as the stiffness matrix D has no direct dependency upon L

▪ The value of the quadratic form does not change if we replace the matrix of coefficients by its symmetric 

part :

▪ So we require that the symmetric part of the stiffness matrix D be positive definite

▪ A sufficient condition for a symmetric matrix to be positive definite is that all its eigenvalues be positive

▪ IFF D is positive definite in the initial (stress-free) state, then positive definiteness is lost when the first 

eigenvalue turns negative (= zero determinant)
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The Limit Point Bifurcation Criterion (LPBC)

▪ The LPBC follows from requiring that the same increment of the 1PK stress can co-exist with 2 velocity fields:

▪ As with GBC this can be reformulated for an arbitrary velocity field if D has no direct dependency upon L

▪ We then obtain a homogeneous system of 9 equations with 9 unknowns, actually identical to the MFC

▪ There are 2 possibilities for the solutions of this homogeneous system:

▪ Note that GBC will always be fulfilled if LPBC is fulfilled since 
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Remarks about GBC and LPBC

▪ Both criteria require to determine the zero-point of a matrix determinant:

▪ The determinant of an n-by-n matrix has n! terms, so:

▪ All 4 material formulations will result in the same instability criteria

▪ GBC defines a stable region in stress space, LPBC just defines a point where instability starts

▪ Note that the stable region defined by GBC is the region where all eigenvalues of D are 

positive, a positive determinant is a necessary but not sufficient condition

▪ We will endeavor to express both GBC and LPBC in function of the state of stress (principal 

stresses or stress invariants) and the material constants only, for this purpose it will be 

convenient to work in the principal system of the Cauchy stress
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Objectivity of GBC and LPBC

▪ In general the transformation between a global fixed reference system (in which GBC and 

LPBC were derived) and the principal reference system of the Cauchy stress tensor is 

determined by a time dependent proper orthogonal matrix Q:

▪ Although the rate of the 1PK stress as well as the velocity gradient are not objective 

quantities, the 4th order stiffness tensor transforms as an objective tensor:

▪ And consequently (since the determinant of Q is unity):
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From GBC and LPBC to an ECRIT surface

▪ As we are allowed to transform into the principal system before computing the determinant, 

GBC and LPBC will result in an equation that can be solved for the critical value of the first 

principal stress for every state of stress:

▪ Clearly LPBC and GBC now result in an equation for the critical value of the first principal 

stress:

▪ The hardening modulus H can be a constant or a monotonically decreasing function of the 

equivalent strain
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From GBC and LPBC to an ECRIT surface

▪ IFF instability occurs in a plastic state, GBC and LPBC result in an instability surface giving a 

critical value of the equivalent plastic strain in function of triaxiality and Lode parameter 

▪ The instability surface is obtained by eliminating the critical first principal stress between the 

instability condition and the hardening law:

▪ And replace the principal stress ratios by the classical invariants to comply with GISSMO:
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Derivation of the ‘PL’ material law

▪ Compute the rate of the 1PK                                 … and bring in the Jaumann rate

▪ And use the definition to compute the fourth order stiffness tensor:
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4th order stiffness tensor as a 9-by-9 matrix

▪ Independently of the material law the second part of the 9-by-9 stiffness matrix (T) becomes:

▪ Transforming in the principal system of the Cauchy stress leads to a spectacular reduction:
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4th order stiffness tensor as a 9-by-9 matrix

▪ In the case of isotropic hypo-elasticity the first ( material) part (C) of the 9-by-9 stiffness matrix is 

independent of the reference system and can be written as:  

▪ For the case of J2 plasticity we get the well known tangent stiffness matrix in the principal system:
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The lower 6-by-6 submatrix: LPBC / GBC cases

▪ After summation, the lower 6-by-6 submatrix is identical in the hypo-elastic and elasto-plastic cases:

▪ Due to its symmetry, this submatrix is also identical for LPBC and GBC

▪ Changing the order of the terms from (12-13-21-23-31-32) to (12-21-13-31-23-32) yields:

▪ Allowing to write the determinant of this submatrix as a product of 3 determinants of 2-by-2 matrices

▪ Obviously this determinant is zero in the stress free state
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LPBC criterion for J2 plasticity material law

▪ In the case of LPBC we identify non-uniqueness of the solution by setting the determinant of the ‘PL’ 

stiffness matrix to zero:

▪ Clearly this predicts loss of uniqueness in the stress-free state requiring better understanding
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Loss of uniqueness need not imply localisation

▪ As the stiffness matrix is not positive definite in the stress-free state, the identification of the region where 

the solution is unique by determining the zero-points of the determinant is compromised for GBC

▪ Better understanding is gained from determining the non-unique solutions implied by LPBC around the 

stress free state, focusing on a single of the lower 2-by-2 submatrices we get:

▪ So any velocity field of the shape below would correspond to a maximum of the rate of P:

▪ And any linear combination of those solutions is also a solution to the linear homogeneous system as all 

3 subdeterminants are zero in the stress-free state

▪ Clearly these are velocity fields corresponding to pure rigid body rotations and they do NOT imply any 

localisation, they would also be excluded by Hill’s original GLOBAL uniqueness criterion
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Critical principal stress values in plane stress

▪ Although the previous eliminates the concern about the stress-free state, other problems remain due to 

the local nature of both LPBC and GBC

▪ We will consider some examples next for plane states of stress:

▪ Then each of the 3 determinants for the lower 2-by-2 submatrixes has 2 zero-points, for instance:

▪ Obviously the zero-point of the determinant of the upper 3-by-3 matrix may also yield the critical stress:

▪ And this evaluation is very different in the elastic and elasto-plastic cases 
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Loss of uniqueness due to spin components

▪ For a hypo-elastic material in uniaxial tension, the LPBC leads to:

▪ However, it is clear that a uniaxial state of stress in X-direction can co-exist with infinitely many strain 

fields that correspond to a rotation around X, for an elastic material:

▪ The value of L23 can be freely chosen as long as L32=-L23, so we do lose uniqueness but obviously 

without localisation, the loss of uniqueness is due to the presence of a non-zero spin tensor

▪ A loss of uniqueness due to the spin tensor means that the same state of stress can co-exist with different 

velocity gradient fields, however it does NOT imply localisation
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Loss of uniqueness around a state of pure shear

▪ We will now focus on the relevant lower 2-by-2 submatrix for a state of stress that deviates by an 

infinitesimal amount from pure shear in the 12-plane:

▪ The non-unique solutions correspond to a combination of pure shear and rigid body rotation, as we 

approach pure shear they approach a pure rigid body rotation

▪ As we move away from pure shear, the non-uniqueness may imply localisation in a shear mode that 

occurs at very low levels of stress as (1+k) becomes a very small number
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What exactly did Hill say ?

▪ Candidate velocity fields must not differ by just a rigid body rotation and must be compatible with the 

prescribed velocity boundary conditions:

▪ It was already clear from the singularity of the stiffness matrix in the stress-free state that formulating a 

local version of Hill’s global criterion is not trivial

▪ Requiring the second order work to be positive in every point (GBC) shows that uniqueness can be lost

and localisation can occur for very small stress values, the LPBC leads to similar conclusions

▪ However non unique solutions with a contribution of the spin components of the velocity gradient, 

although we feel they cannot be ignored, seem to be rare in practical applications, possibly due to the 

requirement of compatibility with the boundary conditions
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GBC and LPBC for metals

▪ We can now evaluate GBC and LPBC by setting the determinants of the upper and lower 3-by-3 

submatrices to zero and identifying the first zero point:

▪ The evaluation is an almost trivial task
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Solutions for plane stress 
(LPBC, Elastoplasticity, E≈H)
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Analytical solutions for the plane stress state 
LPBC, Elastoplasticity, E=2, H=0.7, nu=0.3

However non unique solutions with a contribution of the spin components of the velocity gradient, 

although we feel they cannot be ignored, seem to be rare in practical applications, possibly due to the 

requirement of compatibility with the boundary conditions
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Analytical solutions for the plane stress state 
LPBC, Elastoplasticity, E=2 and E=70, H=0.7, nu=0.3

LPBC (E=2 GPa) LPBC  (E=70 GPa)

Here the root from the lower

6-by-6 matrix is decisive!

2G

• In addition to the argumentation of the previous slide we can see that for materials with a Young’s 

modulus that far exceeds the hardening modulus, the region where the lower 6x6 matrix is decisive 

becomes very small.

• For both reasons we therefore feel justified in relaxing both GBC and LPBC by not considering the 

lower6x6-solutions for realistic metallic materials (E>>H)  
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GBC and LPBC, elastic and triaxiality=0.333…

▪ As an example compute all the roots for LPBC and GBC under uniaxial loads in the hypo-elastic case:

▪ Note that the lower determinant yields the lowest prediction for the critical principal stress in the elastic 

case
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Analytical solutions for the uniaxial tension case
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Comparison of GBC and LPBC 
J2 elastoplasticity (real material DP800)

▪ Elastic properties

E = 210 GPa

nu = 0.3

▪ Plastic properties

yield curve

▪ LPBC and GBC quite similar!
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Comparison of GBC and LPBC 
J2 elastoplasticity (artificial material properties, soft material)

▪ Elastic properties

E = 2 GPa

nu = 0.3

▪ Plastic properties

bilinear yield curve

sigy = 0.2 GPa

H = 0.9 GPa

▪ LPBC and GBC quite different!

Analytical solution for unixial tension

Hypoelasticity: Elastoplasticity:
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Some remarks

▪ Hill‘s criterion identifies the loss of uniqueness of the solution to the equations of elasto-plasticity

▪ It is undisputable but global and cumbersome to check

▪ GBC is a local version of Hill‘s criterion and amounts to an overconservative estimate

▪ Moreover, loss of uniqueness is a clear mathematical notion but does not always imply strain 

localisation

▪ LPBC is a local criterion for loss of uniqueness for the material law without considering boundary 

conditions, for elastic and elasto-plastic material laws the LPBC coincides with the MFC (maximum 

force criterion) and familiar criteria such as Considere and Swift are subsets of LPBC

▪ For example, we have shown that if we ignore the lower submatrices the LPBC is identical to a 3D 

generalisation of Swift 1952 if one correctly considers the elastic strains
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Conclusions

▪ We have derived 2 analytical criteria for the onset of strain localisation

▪ But as we say in Detroit: Will it run ???

▪ Before we put confidence in the predicted instability surfaces by our modified GBC/LPBC 

we need to get confirmation from comparisons with experimental or numerical results

▪ In other words: Are LPBC or GBC consistent with J2-plasticity? Or even more restrictive: 

Is one of them consistent with MAT_024?

▪ Will models based on MAT_024 show a start of localisation of plastic deformation under the 

conditions that our equations predict?

▪ This is the object of our second presentation today
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If it runs.....

▪ ECRIT has been used as a fitting parameter in GISSMO, as the real physical criterion was 

not known, the curve/surface were often adapted in an arbitrary way in order to fit specific 

test data

▪ The availability of a physical criterion will take this degree of freedom away from users but 

definitely bring the simulation results closer to the physics

▪ In other words some local fits may be worse but the overall reliability of the failure 

predictions produced by the model will improve

▪ Bottom line: Preparation of 2D and 3D GISSMO data will become easier as ECRIT will be 

derived automatically from the yield curve of the material
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