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A day In the life of a consultant

euhh....
Paul, | am well.....
creating a In the uniaxial
GISSMO card, case it is the
what do | put for plastic strain at
ECRIT? necking...
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GISSMO and ECRIT

= GISSMO requires the definition of an ECRIT curve (shells) or an ECRIT surface (solids) to
define the ‘start of instability’

= For us that always meant the ‘start of mesh dependency’

" The point on the ECRIT curve corresponding to uniaxial tension indicates the start of diffuse
necking and this point is very well known, under general plane stress or full 3D loading
conditions this is not the case

= |ntuitively, ECRIT is the locus where
= we lose the homogeneous state of stress/strain
= |ocalisation of plastic strain starts
= structural instability is detected
= spurious mesh dependency is detected in the numerical simulations

= |n the case of uniaxial tension all these events are known to coincide at the moment of
maximum force
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Diffuse and localized necking

Uniaxial tension

e Start of diffuse necking

* Loss of homogeneous state
of stress/strain

e Start of structural instability

e Start of localization of
plastic strain

* Moment of maximum force
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What we’ve known for a long time A &
Spurious mesh dependence observed in simulations
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Significant differences in local plastic strain at the same global displacement
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Concentration in a single element band is within the local continuum theory eventually unavoidable
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All kinds of structural instabilities @ ﬁg,; v A
Only diffuse necking happens in both 2D and 3D states of stress

In general, two effects may be distinguished in
uniaxial tension in thin metal sheets:

iffuse j\—:: pe Onset on
e Localized Necking

—
‘\ Failure
Yield Point

Meck
A) Diffuse necking: P 3
N . . ¥ Wo /
Onset of formation of non-uniform strains. i
Usually, this is the point of maximum load , , _ Displaceamoat (mi)
. . . Shape before necking
in the force-displacement diagram.
'
Mg e Ny Falue

1.2
A
1.04
B) Localized necking:
This is understood as the point when strain ~ *°|
localizes a narrow band of constant width
causing pronounced thinning and leading >
the coupon to failure B
0.4
0.2 4
/
e —
%00 0.02 0.04 0.06 0.08 0.10 0.12

Instability and Mesh Dependence Part | — October 2022 | public © 2022 DYNAmore GmbH Slide 7 of 43



2D and 3D instability criteria A YA

7%

State of the art (Abed-Meraim et al., 2014, Bouktir, 2017)

Engineering criteria (1D-2D) Loss of uniqueness and bifurcation criteria (2D-3D)
Hill’52 Localized Ratio of strain rates General Bifurcation Diffuse Second order work
inside/outside loc. band
Hora Localized Maximum Force of major load Limit-Point Bifurcation Diffuse Stationary stress state
component o : : - :
Loss of Strong Ellipticity Localized Discontinuity; Symm. Acoustic
Considere Diffuse 1D Maximum Force in uniaxial case tensor
Loss of Ellipticity Localized Discontinuity, Acoustic tensor
Swift Diffuse 2D Maximum Force in two
directions
MK Localized Imperfection criterion
HN Localized Imperfection criterion
Keeler Localized Empirical
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The concept... Koblenz, May 15t 2019 N

Mercedes-Benz

Paul, can you quickly
derive a 3D version of the
plane stress Swift criterion?

Sure, give me a day or

Hmmm....maybe
two

we need
3 something more
B rigorous?
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Like many other things it starts with
Sir Rodney Hill (11/6/1921-2/2/2011)

" The uniqueness criterion of
Sir Rodney was based on the stiffness
matrix which couples the rate of the nominal
stress to the transposed of the velocity
gradient

= This is a global criterion and the loss of
uniqueness is a function of the material law,
geometry and boundary conditions... we
should always keep this in mind

= Implementation at the level of the integration
point will force us to use a local version of
the unigueness criterion (no integral)
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Journal of the Mechanics and Physics of Solids, 1953, Val, f, pp. 236 to 249,  Pergamon Press Lid., London

A GENERAL THEORY OF UNIQUENESS AND
STABILITY IN ELASTIC-PLASTIC SOLIDS

By R. I,

Department of Mathematies, University of Nottinghan

(Received 27th February, 1938)
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Molding the material law a bit

= We start from the usual incremental elasto-plastic material law with the Jaumann rate:

X 1

L=%  plflirkp weifl-U-w §=C, :D+Wo—oW
ox 2 2

= And recall the definition of the 1PK stress and its transposed called the nominal stress:

_OX

F=—""
0X,

j=|F| P=joF"’ N=jF'e=P'

= In Hill 1958 the material law is reformulated in terms of the rate of the nominal stress and
the transposed of the velocity gradient, D is a 4! order stiffness tensor:

. 4 .
N=Dwr:L'"  N;=DyL,

= But there are also other possibilities that one finds in the literature
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4 variants of the material law

= At least 4 variants are found in modern literature:

o g o s Energy conjugate
P=Dp.:L P=Dpr L' N=Dwn:L N =Dnr : L in Lagrangean configuration
: : : : but not in updated

P = (DPL )ijkl Ll Ri= (DPLT )ijkl Ly Ny = (DNL )ijkl Ly Ny = (DNLT )ijkl Ly Lagrangean configuration

= With some obvious relationships between the components of the 4t order stiffness tensors

4
DNL =

4
DPL ==

4 \TL2 A A T12
DPL) or (DNL )ijkl :(DPL )jikl D :(DPLTJ or (DNLT )ijkl :(DPLT )jikl

A T34 4 4 T34
Devr ) or (Dp, )ijkl =(Dpyy )ijlk D = (DNLT ] or (Dy )ijkl =(Dyr )ii'k

= No wonder it gets confusing out there

= We have chosen to work primarily with the formulation in the 1PK and the velocity gradient
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A change of notation

= Recall the relationship between the rate of the 1PK and velocity gradient and remember
that both of these are neither tensors nor symmetric:

F') _ E')PL L Ijll plZ plS L, Ly, L13 A D, Dy D13
. P= I:)21 Pzz P23 L= L21 L22 L23 DeL = D21 D22 Dzs
Pij - (DPL )ijk' Lk' P31 P32 P33 L31 L32 L33 D31 D32 D33

= We can write this equivalently using 9-by-1 column matrices for P and L and a 9-by-9 matrix
for the fourth order stiffness tensor:

9-by-9

pﬂat =D, L, Pflat — (Pll P22 P33 P12 P13 P21 P23 P31 Psz)
P =(Dy, )ij L, L o = (L11 L, Ls L, L Ly Ly Ly L )T

= Note that this is NOT classical Voigt notation as no symmetry is exploited

®= The double contractions now become simple matrix products
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The General Bifurcation Criterion (GBC)

= The local formulation of Hill's criterion requires the second order work to be positive everywhere:

4 4 9-by—9
AL :DpL :AL>0 — L:Dep :L>0 L' Dy L, >0
AI—ij (DPL )ijkl AL, >0 Lij (DPL )ijkl Ly >0 Li(DPL )ij L; >0

= For elastic/elasto-plastic materials the deviation from an equilibrium state can be replaced by an arbitrary
velocity field as the stiffness matrix D has no direct dependency upon L

= The value of the quadratic form does not change if we replace the matrix of coefficients by its symmetric
part : 9-by—9 1 9-by-9 [ 9-by-9\'
L'w Doy Lo = 5 LTfIat|: Dy, "‘( Dy, j L e >0

= So we require that the symmetric part of the stiffness matrix D be positive definite
= A sufficient condition for a symmetric matrix to be positive definite is that all its eigenvalues be positive

= |[FF D is positive definite in the initial (stress-free) state, then positive definiteness is lost when the first
eigenvalue turns negative (= zero determinant) 9-by—9 9-by-9 [ 9-by-9\"
det( j = det ( j =0

DPL + DPL

DPL—SYM
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The Limit Point Bifurcation Criterion (LPBC)

The LPBC follows from requiring that the same increment of the 1PK stress can co-exist with 2 velocity fields:

. 4 . 4 9-by-9
AF.) =DpAL=0 , P=Dp :L=0 Pflat = Do L =044
AR; = (DPL )ijkl AL, =0y ( ),,k| a=0; R =(Ds ).J L =0,

As with GBC this can be reformulated for an arbitrary velocity field if D has no direct dependency upon L

We then obtain a homogeneous system of 9 equations with 9 unknowns, actually identical to the MFC

= There are 2 possibilities for the solutions of this homogeneous system:

9-by-9 9-by-9
det( D, j #0= L =0 1 (trivial ) solution det( D,, j = 0= oo® ") solutions = loss of uniqueness

Note that GBC will always be fulfilled if LPBC is fulfilled since
9—by—9 9—by—9 9-by-9\ 1/ 9-by-9\ T
det(DPLSYM j _ det( DL, jdet | +( D), j (DPL j
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Remarks about GBC and LPBC

= Both criteria require to determine the zero-point of a matrix determinant:

9-by-9 9-by-9 [ 9-by-9\' 9-by-9
GBC det(DPLSYM J = det DPL +( DPL j = O LPBC det Dp|_ — O
3-by3 6 terms
= The determinant of an n-by-n matrix has n! terms, so: | 6-by-6 720 terms
9-by-9 362880 terms

= All 4 material formulations will result in the same instabillity criteria
= GBC defines a stable region in stress space, LPBC just defines a point where instability starts

= Note that the stable region defined by GBC is the region where all eigenvalues of D are
positive, a positive determinant is a necessary but not sufficient condition

= We will endeavor to express both GBC and LPBC in function of the state of stress (principal
stresses or stress invariants) and the material constants only, for this purpose it will be
convenient to work in the principal system of the Cauchy stress
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Objectivity of GBC and LPBC

= In general the transformation between a global fixed reference system (in which GBC and
LPBC were derived) and the principal reference system of the Cauchy stress tensor is
determined by a time dependent proper orthogonal matrix Q:

Q'()=Q7(t)  Q=TQ r=-r det(Q) =1

= Although the rate of the 1PK stress as well as the velocity gradient are not objective
quantities, the 4" order stiffness tensor transforms as an objective tensor:

4 prinicpal 24 %? rincipal
(DPL) - (Q ® Q)T DeL (QT ®Q' ) (Dpy )i?po "= QuQ (Dp, )klmn QurpQno

= And consequently (since the determinant of Q is unity):

9-by-9 9—-by—9 principal 9-by—9 9—by-9 principal
det(DPLSYM j = dEt(DPLSYM j det( Dy, j = det( Dp, j
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From GBC and LPBC to an ECRI

= As we are allowed to transform into the principal system before computing the determinant,
GBC and LPBC will result in an equation that can be solved for the critical value of the first

principal stress for every state of stress:

principal __

= Clearly LPBC and GBC now result in an equation for the critical value of the first principal

:{f

*= The hardening modulus H can be a constant or a monotonically decreasing function of the

stress: 9-py—9 Principal )
dEt(DPL—SYM j =0

9—by—9 principal
det( D,, j =0

ECRIT
F = 0

equivalent strain
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From GBC and LPBC to an ECRIT surface

* |FF instability occurs in a plastic state, GBC and LPBC result in an instability surface giving a
critical value of the equivalent plastic strain in function of triaxiality and Lode parameter

= The instability surface is obtained by eliminating the critical first principal stress between the
instability condition and the hardening law:

G ECRIT _ f(a b.E.v, H( ECRIT )) e
o2 ( ECRIT) [1+a +bh2—a—_b— ab] ( ECRIT) = &p _g(a’b)

vm

= And replace the principal stress ratios by the classical invariants to comply with GISSMO:

ECRIT — g(a b)
~p 1 1+a+b o,
Om  31+a’+b?-a-b-ab |0 2 g ERT = g[— P ,27313;253)
2755,5, _1(2-a-b)2a-1-b)2b-1-a) T 20um
20, 2 (iva®+b-a b-ab)
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Derivation of the ‘PL’ material law

= Compute the rate of the 1PK

/l P=joF'

P = jtr(D)oF —o(FEF Y +<’rF‘T] as %:tr(D)

T
= P=joF " + jo

+ jeF "

p= Jtr(D)cF—T —o(FILFF ) +6F ]

P=] tr(D)()' oL/ +0]F N

in updated Lagrangean : j=land F=F ' =1
P=6+tr(D)o—oL'

= And use the definition to compute the fourth order stiffness tensor:

.‘“eerin A r
@ ) oA

6=C_:D+Wo-cW

P =CeIO : D+W6—(SW+’[I‘(D)(S—($LT

P =C, - D +Wo —6W +tr(D)s —oD — W'

'T

‘ P =c:4ep :D+1tr(D)o - oD +We

. 4 4 ' 4
P:DPL:L:DPLzzg—E:Cep+ 2 (

o tr(D)o — oD + Wo) = (:ip+T‘,iL /
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4t order stiffness tensor as a 9-by-9 matrix @

Mercedes-Benz

= Independently of the material law the second part of the 9-by-9 stiffness matrix (T) becomes:

0 20, 20, 0 0 -20,, 0 -20,, 0
20,, 0 20, -20, 0 0 0 0 —20, o S
5 Deriving this is index
Oy, 205 O 0 — 20, 0 —20,, 0 0 : .
notation at a higher level
abyo g 1 20y 0 20, o0,-0y O3 0 —0p K — Oy — 013
T = a_L(tr(D)G_GDJFWG):E 204 205 O O3 —01 T 0y ~ 03 —0p —O03~0n —0p, However, since D and W
0 20, 20y, —0,-—0y — Oy —O0p + 0y O3 — Oy — O3 depend Iinearly onlL,itis clear
20, 20, O — 0y -0y Oy — 0, + 0y — 0y — 03— 0y that only stress terms remain
0 20, 20y O3 ~ 033~ 0y ~ O3 ~ 0y 013 =03 012
205, 0 20y ~ O3 ~Oan ~ O3 ~03» Oz O O ~ Oz

= Transforming in the principal system of the Cauchy stress leads to a spectacular reduction:

0 20, 20, 0 0 0 0 0 0
26,, 0 20, 0 0 0 0 0 0
2053 205 0O 0 0 0 0 0 0 The 9-by-9 matrix is split in
9-by-91\ Principal 4 0 0 0 02 ~On 0 T03 7 0n 0 0 0 an ‘upper’ 3-by-3 matrix
[ To j =5 0 0 0 0 — 0y, + 0y 0 0 — 04— 0y 0 and a ‘lower’ 6-by-6 matrix
0 0 0O |-o,-—- 0 -0, + 0 0 0
Oz~ %n Oz "% No more coupling between
0 0 0 0 0 0 010y 0 TO03 70y incremental normal and shear terms
0 0 0 0 e — 0 0 oy~ Oy 0
0 0 0 0 0 0 —0,, — Oy 0 O, — O3
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4t order stiffness tensor as a 9-by-9 matrix @

Mercedes-Benz

= |n the case of isotropic hypo-elasticity the first ( material) part (C) of the 9-by-9 stiffness matrix is
iIndependent of the reference system and can be written as:

2G+41 A A 0 0 0 0 0O
A 26+4 4 0 0 0 0 0 O Same uncoupling between normal and shear terms as in T
yl A 2644 0 0 0 0 0 O
0 0 0 G 0 G 0 0 0 99 99 )G S®s
9-by-9 2G Cep = CeI VAT
Cy=| O 0 0 0G0 0 G 0 2=K-2 (“Hj Is|
0 0 0 G 0 G 0 0 0 3G
0 0 0O 0 0 0 G 0 G
0 0 0 0G 0 0 G 0 C has enough symmetry to reduce to a 6-by-6 matrix using Voigt notation
T however does not
0 0 0O 0 0 0 G 0 G
= For the case of J2 plasticity we get the well known tangent stiffness matrix in the principal system:
2G+A A A 0 0 0 0 0 O S, SuS;, SuSs 0 0 0 0 0 O
A 2644 A1 0 0 0 0 0 O S;,S, S»S;, SpSm 0 0 0 0 0 0
p) A 2644 0 0 0 0 0 O S.S;; S»S; xS, 0 0 0 0 0 0 20, —0, — 0y
sos | O 0 0 G 0G0 D00 . 0 0 0 000000 " 3
C, =| O 0 0 0G0 0G 07— 0O 0 0 0000O0GO0SO » _0“+;22_033
0 0 0 Goeooo(l+j05m0 0 0 000O0O0O 0126
3G g —_9u"9% 33
0 0 0 000G O G 0 0 0O 000O0O0TO % 3
0 0 0 0G0 O0G O 0 0 0 000O0O0O
0 0 0O 000G O0 G 0 0 0 000O0O0TO
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The lower 6-by-6 submatrix: LPBC / GBC cases

Mercedes-Benz

= After summation, the lower 6-by-6 submatrix is identical in the hypo-elastic and elasto-plastic cases:

N |-

2G+o,, -0y,
0

2G -0y -0y
0
0
0

0
2G+o0, -0y
0
0
2G -0, — 0y

0

2G -0, -0y
0
2G-o,,+0y,
0
0
0

0

0

0
2G+o0,—0,

0

2G—-0,, — 044

0

2G —o0, — 04
0
0

2G -0y, +oy,

0

0
0
0
2G -0, —0y
0

2G -0y, +0,

= Due to its symmetry, this submatrix is also identical for LPBC and GBC
= Changing the order of the terms from (12-13-21-23-31-32) to (12-21-13-31-23-32) yields:

N |-

2G+o,, -0y,
2G-0, -0y,

0

0
0
0

2G -0, -0y,
2G-0,,+oy,

0

0
0
0

0

0
2G+oy, -0y
2G -0y — 03,

0

0

0
0
2G -0y, — 0y
2G -0y, +0oy,
0
0

o O O

0
2G+ o0, -0,

2G-0,, — 044

o O O

0
2G —0,, — 04

2G -0y, +0,

i
o oo o O O
o oo o O O
o o M O o o

o o MO O o o
OO o o o o
OO o o o o

= Allowing to write the determinant of this submatrix as a product of 3 determinants of 2-by-2 matrices

= Obviously this determinant is zero in the stress free state
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LPBC criterion for J2 plasticity material law

Mercedes-Benz

" |n the case of LPBC we identify non-uniqueness of the solution by setting the determinant of the ‘PL’
stiffness matrix to zero:

2G+A A A 0000 00 S.5: SuSy SuSy 0 0 0 0 0 0
A 2644 A 0 0 0 0 0 O 5,5, SpSp SuSw 0 0 0 0 0 O
A A 26G+2 0 0 0 0 0 0 §.5: SypSs SwSy 0 0 0 0 0 0
0 0 0 G G 0 0 0 O 0 0 0O O0O0O0OOO0OTO
0 0 0 G G 0 0 0 0]- |3_|G 0 0 0O 0O0O0OOO0OTO
0 0 0 0 0 G G 0 O (1+?>GJGVZm 0 0 0O 0O0O0OOO0OTO
0 0 0 0 0 GG 0 O 0 0 0O 0O0O0OOO0OTO A 0 0 0
0 0 0 0 0 0 0 G G 0 0 0O 0O0O0OOOTO 0 Db, O 0
0 0 0 000 0GG 0 0 0 000000 “o 0 b, o = det(A)det(D;;)det(Dy,det(D) =0
et 0 20, 20, 0 0 0 0 0 0 =0 0 0 0 D,
26, 0 20, 0 0 0 0 0 0
205 205 0 0 0 0 0 0 0 stress — free state :
1 0 0 0 O, =0y —0,—0y 0 0 0 0
2 0 0 0 —op-oy —optoy 0 0 0 0 6 =0= det(D,, )= det(D,, )= det(D,,)=0
0 0 0 0 0 Oy — 0y —O0p—0y 0 0
0 0 0 0 0 —0y—0,, Oy —Og 0 0
0 0 0 0 0 0 0 O3 — 0, —0z3—0y
i 0 0 0 0 0 0 0 —03— 0, Oy —Ogy ]

= Clearly this predicts loss of uniqueness in the stress-free state requiring better understanding
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the solution is unigue by determining the zero-points of the determinant is compromised for GBC

= Better understanding is gained from determining the non-unique solutions implied by LPBC around the
stress free state, focusing on a single of the lower 2-by-2 submatrices we get:

. T
P 2G 2G 0
.12 _ L12 _ — L12 =—L21
P, 2G 2G|\ L, 0
= So any velocity field of the shape below would correspond to a maximum of the rate of P:
det(D,,)=0=L,,=(0 0 0 L, L, 0 0 0 0)=L,00 0 01 -1 0 0 O 0)

det(D,, )=0=L,, =0 0 0 0 O L, L, O 0)=L, (0 0 0 0 01 -1 0 0)
det(D,,)=0=L,,=(0 0 0 0 0 0 0 L, L,)=L.,0 O O 0 0 O O 1 -1)

= And any linear combination of those solutions is also a solution to the linear homogeneous system as all
3 subdeterminants are zero in the stress-free state

= Clearly these are velocity fields corresponding to pure rigid body rotations and they do NOT imply any
localisation, they would also be excluded by Hill's original GLOBAL uniqueness criterion
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Critical principal stress values in plane stress

= Although the previous eliminates the concern about the stress-free state, other problems remain due to
the local nature of both LPBC and GBC

= We will consider some examples next for plane states of stress:
0,720 o0,=0 o,=ko; k<1

® Then each of the 3 determinants for the lower 2-by-2 submatrixes has 2 zero-points, for instance:

© o)
det(D,,)=0= (o, 02):<(ZG(1+k) k26(1+k)j

-

1+k? 1+k?
= Obviously the zero-point of the determinant of the upper 3-by-3 matrix may also yield the critical stress:
det(A)=0

= And this evaluation is very different in the elastic and elasto-plastic cases
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Loss of uniqueness due to spin components

= For a hypo-elastic material in uniaxial tension, the LPBC leads to:

det(A)=0—>0, = ZE
%

. ( E
== < mln[— ZG] = O ritical
det(D12 ) = det(D31) =0-0,=26G

2V

= However, it is clear that a uniaxial state of stress in X-direction can co-exist with infinitely many strain
fields that correspond to a rotation around X, for an elastic material:

o, 00 L, O 0
det(D,,)=0=|0 0 O|>| 0 -, L,
0 00 0 -L,, -w,

= The value of L23 can be freely chosen as long as L32=-L23, so we do lose uniqueness but obviously
without localisation, the loss of uniqueness is due to the presence of a non-zero spin tensor

= Aloss of uniqueness due to the spin tensor means that the same state of stress can co-exist with different
velocity gradient fields, however it does NOT imply localisation
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Loss of uniqueness around a state of pure shear

= We will now focus on the relevant lower 2-by-2 submatrix for a state of stress that deviates by an
Infinitesimal amount from pure shear in the 12-plane:

with k> -1

2G(1+k 2G(1+k
T s

F:)12 _ 2G-0oy+0, 2G-0,-0, | Ly _ 462 k* —k| Ly, _ 0 L, =KL, >-L,
Py 2G-oy,,-0, 2G+o,-0,\L,) 1+k“(-k 1 \L, 0

L, (1— kjki)li(Oj +i( 2 j The non-unique solutions have

1
note that L = LQKK) 5 k-1 > o 5 | _2 a small pure shear component

= The non-unique solutions correspond to a combination of pure shear and rigid body rotation, as we
approach pure shear they approach a pure rigid body rotation

= As we move away from pure shear, the non-uniqueness may imply localisation in a shear mode that
occurs at very low levels of stress as (1+k) becomes a very small number
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What exactly did Hill say ? N

Mercedes-Benz

Candidate velocity fields must not differ by just a rigid body rotation and must be compatible with the
prescribed velocity boundary conditions:

5. Uniqueness CRITERION A sufficient condition for uniquencss is thercefore that

We regard the current distribution of stress in a body as given, together with L ‘
the matcrial propertics at every point. For simplicity body forces are omitted J A Jo.. Llf l A (‘\1’) dV >0 (20)
since their mode of inclusion is sufficiently obvious. The nominal traction-rate 12 (Quy/22)) ~ \owy
F is specified on a part S, of the current surface and the velocity v on the remainder for all pairs Od continuous velocity fields taking the preseribed values on S;-‘l By
S.. These conditions and the field equations (2), (3), (6) and (10) set a boundary- specializing (20) for pairs differing only infinitesimally, we see that it implies
value problem for the internal velocity field. . ’

Suppose that there could be two distinet sulutionsl(not differing merely by al ’( e dV -0 (21)

| rigid-body motionlwhen S, = 0) and denote their difference by A v. Then, from L

It was already clear from the singularity of the stiffness matrix in the stress-free state that formulating a
local version of Hill's global criterion is not trivial

Requiring the second order work to be positive in every point (GBC) shows that uniqueness can be lost
and localisation can occur for very small stress values, the LPBC leads to similar conclusions

However non unique solutions with a contribution of the spin components of the velocity gradient,
although we feel they cannot be ignored, seem to be rare in practical applications, possibly due to the
requirement of compatibility with the boundary conditions
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GBC and LPBC for metals A

Mercedes-Benz ere sop B>

= We can now evaluate GBC and LPBC by setting the determinants of the upper and lower 3-by-3
submatrices to zero and identifying the first zero point:

2G+ 4 A A S11S11 S11S,

LPBC : det A 2G+ 1 A |- T $52S11 S5,
2

A A 2G+ 4 ( jdvm S33S;;  S33S,,

Upper
3-by-3

2G+ 4 A A S

Sz S11533 0
3G

1

S11
A 2G+ A A — S»S11  S55Sy,  SyrSa3 +§ O, + 0y
S33

1 H 52
A A 2G+ 4 +£ Oum \ S33Sy;

Sy S33533 O3t 0

2G+0, -0, 2G-0,-0, 0 0 0 0 GG OO 00
2G-0,-0, 2G-0,+0, 0 0 0 0 GG OO 00 Lower

GBC+LPBC: ! 0 0 2G+0,-0, 2G-0y, -0y 0 0 40 0 G G 0 0
2 0 0 2G-0,~0, 2G-0y,+0, 0 0 0 0G GO0 0 6-by-6

0 0 0 0 2G+0,-0, 26-0,-0,| |0 0 0 0 G G

0 0 0 0 2G -0, -0y 2G-04+0,) (0 0 0 0 G G

= The evaluation is an almost trivial task
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Solutions for plane stress
(LPBC, Elastoplasticity, E=H)

Mercedes-Benz

ou 0 0 P10t =|(Pi1, Pag, Pi, Pra, Por, Pi, Pa1,) Pas, P

o= 0 o099 0
0 0 o33=0 Lfat =|(€11, €22, €33, €12, €21, €13, €314 €23, €32

62 (2sigll-sig22) (sigll+sig22) a 0 0 a 0 a 1

62 (-2sigllssiga2)? lamda + sig1l + 62 (sigll-2 sig22) (2 sigll-sig22)
136+H) (sigl12_sigll sig22+sig22?|

- 5 = = - = lamda+sigll -+
(3G+H) [sigll®-sigll sig22-sigza®| (36+H) [sigll®-sigll sig22+sigaa®|

2G+ lamda -

2 . . N N
62 (sigll-2 s;gzzJ tswgll+s1g22;2l a o o a 0 a
(36+H) (sigli?-sigll sig22+sig22?)

62 (sigll-2sig22)2

62 (sigll-2sig22) (2sigll-sig22) 26+ lamda -

- 5 - - > = lamda + sig22 -
(3G+H) [sigl1%-sigll sigea+sig22?| (3G+H) [sigl1®-sigll sige2+sig2a?)|

lamda + sig22 +

I ) 2 . . . o 2 s i s R 2 . s o2
a l t lamda + G° (2 sl‘\gll.fsz‘|g22; rs1g].l¢s‘\g22_|2‘ lamda - G fs‘\lgl.].72 sz‘\g22_| fS'IglJ_#S'Ig22J2I 26+ lamda - .G fS;glJ_4S'Ig22J - a o) o) a ) a
CPL a i i i i (36+H) (sigl1?-sigll sige2+sig22?| (36+H) (sigl1?-sigll sige2+sig22?|

(3G+H) [sigl1?-sigll siga2+sig22?|

9x9 — aL [ o @ G+ 2 (-sigll+sigaz) G- gt _ =ie2 0 @ @ @
flat 5] ) @ G- Lgll _ % G+ s'igll;s'igzz [} ) 0 )
e [} ] @ o G—% G—% [} [
e o ) ) e G- 8l . B | o 0
0 ) @ @ 0 0 @ G-S“'% G-’”*%
e o e 0 e @ o |G- =i 6. i

det(Chrg) = det(c?)x?)m) * det(szz 12) * det(cm 13) * det(czxzzs) 0

sigll .
0-1 1 sigll sigll sigll 3.0 sigll
3.0 3.0 | 3.0r 3.0
" | 25
25 25 \ 25 25
\ 20
2.0 2.0 \ 2.0} 20
\ I
\ 15 N
160sl= 1.5 Bl= 15 \ 1 15t 5
AN / Lo 10
1.0 10 ~_ -/‘/ 1ol
- _— 0sl 0.5 05
0.5 05
0.0 riax
0.0 tria o
X triax 0.0 trizx 0.0 0.1 0z 03 04 05 06 0.7 0.0 0.1 0 0.3 o 06 o .0 03 o4 o
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6 07

n
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Analytical solutions for the plane stress state

LPBC, Elastoplasticity, E=2, H=0.7, nu=0.3

det(CH%)

Mercedes-Benz

— det(CSIL’Sup) * det(c6$6down):0

N\

\

0.0 L L L L : . ! triax
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

— {triax, fke[1]}

{triax, fktl[2]} 250
— {triax, fkt[3]}
— {triax, fkt[4]}
— {triax, fktlsl} el= 15}
— {triax, fkt[6]}
. - — {triax, fkt[7]}
05k {triax, fktl8I} 05t
— {triax, fkt[al}

det(CBxS'u,p) 0

{triax, fkt[2]}
— {triax, fkt[3]}
— {triax, fktl4l}
— {triax, fkt[5]}
— {triax, fkt[&]}
— {triax, fkt[7]}

{triax, fkt[8I}
— {triax, fkt[9]}

\ — {triax, fke[1]}

! _triax
7

det (C6$6down) =0

2.5
2.0
= 1.5

e — {triax, fktl7I)
0.5 {triax, fktl8l}
— {triax, fkt[9]}
0.0 ! ! . ! ! . ! triax
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

— {triax, fkt[1]}

{triax, fktl2]}
—— {triax, fktl30}
— {triax, fkt[4]}
— {triax, fkt[5]}
— {triax, fkt[6l}

However non unigue solutions with a contribution of the spin components of the velocity gradient,
although we feel they cannot be ignored, seem to be rare in practical applications, possibly due to the
requirement of compatibility with the boundary conditions
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Analytical solutions for the plane stress state (4

LPBC, Elastoplasticity, E=2 and E=70, H=0.7, nu=0.3

LPBC (E=2 GPa)

sigll
— {triax, fkt[1]}

{triax, Tkt[2]}
— {triax, fktI3]}
— {triax, fkt[4]}
— {triax, fktI5I}
— {triax, fkt6I}
— {triax, Tktl7]}

{triax, Tkt[8]}
— {triax, fkt[9]}

w

2G

“\
J

\

0 L n 1 1 1 1 ] triax
5 0.7

Here the root from the lower
6-by-6 matrix is decisive!

Mercedes-Benz

LPBC (E=70 GPa)

. ring
inee 3 S’a

"'75%/)

ere soP ¥

7%

L I L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6

! triax
0.7

—

TOvnna

NMIORE

— {triax, fkt[1]}

{triax, fktl2]}
— {triax, Tkt[3]}
— {triax, fkt[4])}
— {triax, tkt[5]}
— {triax, fktl6]}
— {triax, fkt[7T}

{triax, Tktl8]}
— {triax, fktl[91}

becomes very small.

» In addition to the argumentation of the previous slide we can see that for materials with a Young'’s
modulus that far exceeds the hardening modulus, the region where the lower 6x6 matrix is decisive

« For both reasons we therefore feel justified in relaxing both GBC and LPBC by not considering the
lower6x6-solutions for realistic metallic materials (E>>H)
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LPBC : upper
((2G+1 A A

det/| 2 26+1 2
2 A 2G+2

2G?

=0y >0 =

0 o,
+0 O

0 O

9KG E

3G +
A

3K—-2G 2v

LPBC and GBC : lower

2G -0y,
2G -0y,

2G -0y,
2G+oy,

0
0
0

0

0
0
2G -0y,
2G -0y,
0
0

Oy
0
0

0
0

2G -0y,
2G +oy,

0
0

0
2G 2G
2G 2G

—>%(ZG—011)(ZG +011—2G+0'11):0—>{

GBC : upper

2G+ 1 A A 0
det A 2G+ A4 A +E

A A 2G+ 4

017 Oy
o, 0 O
0 0

=0

Oy

oA+ 202 +2G2+3GA
—24-2J12 +2G2 +3GA

o) +4l0, —8G*-12GA=0—> 0, = {

Zero root is
discarded as the
corresponding
velocity field is a
pure rigid body
rotation

" Note that the lower determinant yields the lowest prediction for the critical principal stress in the elastic

case
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Analytical solutions for the uniaxial tension case

Instability stress in GPa

500

B
o
=

(%]
[=]
=]

el

o

o
|

—
o
[=]

o

hypo-elastic law uniaxial tension E=200GPa

GBC : o, =

2E

lower: o, = £ 2G

1+v
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____________________________ XY data
b PBC upper
............................ =B.GBC upper
b PBC-GBC-lower
|
0 0.1 0.2 0.3 04 0.5
Poisson Ratio
E 011
LPBC : 0, =—
Loy c=0cl =| 0
0

Instability stress in GPa

&

Mercedes-Benz

.‘“eerm S’a
S
G

ere sop &°

TOvnna

NMIORE

300 J2 plasticity uniaxial tension E=200GPa H=50GPa
| § | | § XY data
250 : abe-PBC upper
; : ' ' i -B._GBC upper
I S IS A IS S S SN IR L] =) PBC-GBC-lower
200 \K :
i : k c
150 s ! ! ; C
100 i
50 | e B
0
0 0.1 0.2 0.3 04 0.5
Poisson Ratio

LPBC

GBC :

lower

oy =

EH

E+2H

2EH

O,

Loy =——

1+v

2G
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Comparison of GBC and LPBC N @
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J2 elastoplasticity (real material DP800)
o Plane stress: eq. plastic strain Plane stress: first principal stress
. . LPBC ep LPBC ep
= Elastic properties 35 1 GaC ep 1101 GBCep
E = 210 GPa
nu = O 3 2.5 1 1.00
e 2 2.0 5 095
= Plastic properties 15 ] 090
yield curve 10 ::Z
) 0.75
o0 0.0 01 02 0.3 0.4 05 0.6 0.0 0.1 0.2 03 0.4 0.5 0.6
triax triax
Yield curve
1.4
= LPBC and GBC quite similar! 1]
1.0 ~
5ot — Servation
0.6 4 —— E=70.0,nu=0.3
0.4 4
0.2
0.0

T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
epsp
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Comparison of GBC and LPBC

J2 elastoplasticity (artificial material properties, soft material)

Mercedes-Benz

0 Plane stress: eq. plastic strain Plane stress: first principal stress
. —— LPBCel —— LPBC el
: : 3.5 - —— GBC el | —— GBCel
"= Elastic properties LABC ep 6 LPBC ep
E =2 GPa 3.0 - GBC ep ‘. GBC ep
nu = 0.3 2.5
o . 4
= Plastic properties R g
bilinear yield curve 15 1 ]
sigy = 0.2 GPa 1.0 2 -
H = 0.9 GPa 0.5 -
l_
00 I T T ! T ! T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
triax triax
Analytical solution for unixial tension
Hypoelasticity: Elastoplasticity:
. L |
LPBC and GBC quite different! 1pBC: o~ E LPBC - 0, = _EH
2v E+2vH
2E
GBC .o, = GBC - o = 2EH
V2J1-v 2y ' E+2Hv+ (E+H)E+2H -2Hv)
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Some remarks

= Hill's criterion identifies the loss of uniqueness of the solution to the equations of elasto-plasticity
= |t is undisputable but global and cumbersome to check
= GBC is a local version of Hill's criterion and amounts to an overconservative estimate

= Moreover, loss of uniqueness is a clear mathematical notion but does not always imply strain
localisation

= LPBC is a local criterion for loss of uniqueness for the material law without considering boundary
conditions, for elastic and elasto-plastic material laws the LPBC coincides with the MFC (maximum
force criterion) and familiar criteria such as Considere and Swift are subsets of LPBC

= For example, we have shown that if we ignore the lower submatrices the LPBC is identical to a 3D
generalisation of Swift 1952 if one correctly considers the elastic strains
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Conclusions

We have derived 2 analytical criteria for the onset of strain localisation

= But as we say in Detroit: Will it run ???

= Before we put confidence in the predicted instability surfaces by our modified GBC/LPBC
we need to get confirmation from comparisons with experimental or numerical results

= |[n other words: Are LPBC or GBC consistent with J2-plasticity? Or even more restrictive:
Is one of them consistent with MAT 0247

Will models based on MAT_024 show a start of localisation of plastic deformation under the
conditions that our equations predict?

= This is the object of our second presentation today
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If It runs.....

= ECRIT has been used as a fitting parameter in GISSMO, as the real physical criterion was
not known, the curve/surface were often adapted in an arbitrary way in order to fit specific
test data

= The availability of a physical criterion will take this degree of freedom away from users but
definitely bring the simulation results closer to the physics

= |[n other words some local fits may be worse but the overall reliability of the failure
predictions produced by the model will improve

= Bottom line: Preparation of 2D and 3D GISSMO data will become easier as ECRIT will be
derived automatically from the yield curve of the material
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