FEMZIP

07/2013

SIDACT

- Fraunhofer Spinn-Off starting January 1st, 2013
- FEMZIP Compression of Simulation results
- DIFFCRASH Robust Design: Identification of areas in geometry causing scatter of simulation results
- Marketing, support, new application areas
 - 6 ex-Fraunhofer people

SIDACTGmbH

CHALLANGE

Challenge

In order to improve engineering design ...

- more simulations are performed
- larger, more detailied Models are used
- » Large amounts of data are generated!

The data has to be ...

- analyzed
- exchanged
- archived

SOLUTION

Data Compression

Two fundamentally different compression approaches:

Lossless Data Compression

The original data can be restored identically from the compressed data

Lossy Data Compression

The original data **cannot** be restored identically from the compressed data

With lossy data compression schemes a much stronger reduction can be achieved!

Data Compression

Floating-point data **cannot** be efficiently compressed losslessly:

- » A compression factor of only 1.2 is obtained
- » The solution is **FEMZIP**

Airflow simulation around a car: 6 variables, 43 million elements, 21 time steps

Advantages

Reduced Archive Size

Storage and backup capacities can hold more simulation results

Shorter Data Transfer Times

Simulation results can be transferred significantly faster

Quicker Data Loading

Compressed data can be loaded quicker into post processors

Products

CRASH

- FEMZIP-L for LS-DYNA™
- FEMZIP-P for PAM-CRASH ™
- FEMZIP-R for Radioss[™] Explicit
- FEMZIP-ERFH5 for PAM-CRASH[™] new format (beta)
- FEMZIP-a4db for GNS Animator4 database (July 2013)

CFD

FEMZIP-ENSG for EnSight[™] Case Gold
 FEMZIP-CCM for StarCD[™] (.ccm data format)
 FEMZIP-OF for OPENFOAM (incremental and distributed data handling)

NVH

■ FEMZIP-N for OP2 (NASTRAN[™] / Radioss[™] Implicit)

Compression Factors

Compression Factors

Full results
Geometry only
FEMZIP

Usually higher compression factor

- coarser geometry precision
 - more functions

FUNCTIONALITY

Lossy Data Compression

Quantization

Floating point data is rounded to a given precision and mapped into the integer domain.

Prediction

A bijective transformation is performed to prepare those integers for encoding purposes (reduce entropy).

Encoding

Afterwards an entropy encoding method is used which removes redundant bits.

>> **FEM**ZIP achieves compression factors of about 10!

- Can be used to specify application relevant precisions
- FEMZip generates a standard file for a given input case :

femzip -I <data> -P <parameter_file_name>

Number of		1	
Number	ell:	1	
Node va	alues: precision		
	coordinates	:	0.01
	velocities	:	2033.
	accelerations	:	0.3105E+10
Shell	values: precision		
	effective_plastic_strain	:	4.339
	thickness	:	0.1140
	<pre>element_dependent_variable_1</pre>	:	0.1000E-19
	<pre>element_dependent_variable_2</pre>	:	0.2886E-07
	internal_energy	:	10.55
	extra_value_per_element	:	0.5057E-01

- Can be used to specify application relevant precisions
- FEMZip generates a standard file for a given input case :

femzip -I <data> -P <parameter_file_name>

Number of extra values per shell:		1
Number of extra values per thick she Node values: precision	11:	1
coordinates	:	0.01 -
velocities	:	2033.
accelerations	:	0.3105E+10
Shell values: precision		
effective_plastic_strain	:	4.339
thickness	:	0.1140
element dependent variable 1	:	0.1000E-19
element_dependent_variable_2	:	0.2886E-07
internal_energy	:	10.55
extra_value_per_element	:	0.5057E-01

Parameter files can be then used to specify the precisions for compression

femzip -l <data> -O <output_file_name> -C <parameter_file_name>

FEMZip provides a compression lof to summarize the overall performance

A verbose log can be generated using:

Compression Analy Header Active CFD Global data 96154	sis 99860236 102841074 0 8	3553189 1577 0 961548	28.10 65213.11 0.00 1.00			
Component name	Increment	Min value	Max value	Size uncomp	Size comp	Ratio
Nodevalues Coordinates Velocities Accelerations Thickness	0.1000 2033. 0.305E+10 0.1140	-5354. -0.164E+06 -0.87E+11 0.000	5368. 0.203E+06 0.946E+11 11.40	106405740 106405740 106405740 101482290	14460711 3415974 142876 107463	7.4 31. 0.74E+03 0.94E+03
<pre>1D element values axial_force s_shear_resultant</pre>	481.3 496.4	-0.48 -0.23	1E+05 0.27E 8E+05 0.49E	+05 2940 +05 2940	904 748	3.3 3.9

femzip -l <data> -O <output_file_name> -V

- Less precise ~ Better compression ratio
- Compression time mainly relates to compression level used

Original Data (Size: 1.1 GB) Compressed Result Coordinate Precision = 0.01 (Size: 0.052 GB) ~ 21 factors

Compressed Result Coordinate Precision = 0.5368 (Size: 0.038 GB) ~ 28 factors

Effects of Precision on Simulation Results

Data Used - "GM: Explorer"

- Supported pre- and post- processor tools :
 - D3plot (ARUP)
 - GNS Animator 3/4
 - ESI Crashviewer
 - Hyperview
 - LS PrePost
 - μΕΤΑ

Postprocessor performance: Animator 4

- Benchmark Data "GM- Explorer"
 - Original Data Size : 1,1 GB
 - Number of states : 26
 - Compression Parameter : Coordinates (Precision 0.01)
 - Compressed Size : 0.052 GB

	Original Data	Compressed Data
Opening Time (sec)	10	6
Traversing Time (state 1 to state 26)	Negligible	Negligible

Postprocessor performance: OASYS d3plot11

- Benchmark Data "Car2Car"
 - Original Data Size : 7,9 GB
 - Number of states : 42
 - Coordinates (Precision 0.1)
 - Compressed Size : 0.052 GB
 - Time for pre-fetching : 8 sec

 - Prefetching refers to looping thourgh all possible states before analysis is done

	Original Data	Compressed Data				
Opening Time (sec)	~ 2	~2				
Without Prefetched States						
Traversing Time (state 1 to state 42)	negligible	7				
Traversing Time (state 42 to state 20)	negligible	4				
With Prefetched States						
Traversing Time (state 1 to state 42)	negligible	negligible				
Traversing Time (state 42 to state 20)	negligible	negligible				

Benchmarked data accessed from local disk

Postprocessor performance: OASYS d3plot11

Benchmark Data - "Car2Car"			
Original Data Size : 7,9 GB		Original Data	
 Number of states : 42 	Opening Time (sec)	55	
 Coordinates (Precision 0.1) 	Without P	refetched States	
 Compressed Size : 0.052 GB 	Traversing Time (state 1 to state 42)	15	
Time for pre-fetching :	Traversing Time (state 42 to state 20)	15	
 Original : ~ 10 minutes Compressed: 8 sec 	With Pre	efetched States	
	Traversing Time (state 1 to state 42)	negligible	
	Traversing Time (state 42 to state 20)	negligible	

Benchmarked data accessed from server over a 100 Mbps network (24 Mbps effective transfer speed)

Compressed Data

~ 60

7

4

negligible

negligible

Process Integration

- **FEMZIP** is designed to be integrated into existing processes
- FEMZIP made to work in batch processes

Company wide standard parameter file

07/2013

