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Summary:

Sheet metal forming processes cover a wide range of applications in industry. In order to model sheet
metal forming processes using numerical simulation an accurate description of the material behavior is
required. To this end a material model has been implemented which is capable of capturing the move-
ment and proportional expansion of the yield surface along with the change in the shape of the yield
surface. The former is described as kinematic and isotropic hardening, respectively, and the latter is
termed as distortional (cross) hardening. Once the model is implemented the second step consists in
identifying the material parameters. In this contribution, a strategy for the identification of material param-
eters is presented. The strategy is based on identifying the isotropic hardening, combined hardening
(isotropic-kinematic hardening), and complete hardening model (isotropic-kinematic-cross hardening)
sequentially, in such a way that the parameter values identified in the previous step are used as start-
ing values for the next step. Hence, the isotropic and kinematic hardening are first identified using the
monotonic shear and Bauschinger shear test data, then the distortional (cross) hardening effect is de-
termined using orthogonal tension-shear data using the isotropic-kinematic hardening parameter values
as starting values. The material model was implemented in LS-DYNA using user defined material and
LS-OPT based parameter identification for the steels LH-800 and DC06 is performed. The identified pa-
rameters are first validated and then used in F.E. simulations using ABAQUS and LS-DYNA. A complete
account on application of identified material model is presented in the talk ”Numerical investigation of
draw bending and deep drawing taking into account cross hardening” presented at this meeting.
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1 Introduction

The experimental and theoretical characterization of sheet metal forming continues to provide a number
of challenges for theorist and experimentalist alike. Among the foremost issues in this regard is a realistic
model for the material behavior involved. Metal forming processes generally involve large strain result-
ing in significant microstructural development and significant induced anisotropic hardening. In many
sheet metals subject to complex loading, dislocation microstructure consisting of dislocation-poor cells
surrounded by dislocation-rich walls develop. Such microstructure formation is accompanied by local
residual stress state development and various types of hardening. In case of reverse (i.e., Bauschinger)
loading, for example, deformation is accomodated by slip on the same slip systems but in opposite di-
rection. Excess dislocations oriented in the original loading direction induce a residual stress state in the
reverse direction which effectively lowers the yield stress in this direction, representing the Bauschinger
effect. In case of orthogonal (e.g., tension-shear) loading path changes, the slip systems activated dur-
ing the previous deformation become latent, and new slip system are activated. Depending on a number
of factors, the dislocations structures associated with the now latent systems may act initially as obstacle
to slip on the newly active slip system, resulting in a transient increase in yield strength in the orthogonal
direction. Continued orthogonal loading results in a breakdown in these structures and their reformation
in association with the active slip systems. Such a transient or dynamic increase in yield strength after
an orthogonal loading path change results in a change in the shape of the yield surface as is known as
cross or distortional hardening [e.g.,[6, 7, 8]].

The current work begins in Section 2 with a formulation of the current model in the framework of the
multiplicative decomposition of the deformation gradient and based on micromechanical considerations.
As in the approach of [7] and [9], the current approach accounts for both hardening stagnation after load
reversal and for cross hardening after orthogonal loading-path changes. The effects of such processes
on the mechanical behavior is investigated experimentally in the current work with the help of tension-
shear and cyclic shear tests described. The experimental setup and details together with the basic
results for the steels LH800 and s DC06 are described in Section 3. In Section 4, the strategy developed
for model identification on the basis of the data from Section 3 is presented along with the results of this
identification. The determination of parameter values for models like the current one emboding complex
three-dimensional history-dependent higher-order tensorial behavior in a physically-meaningful way is
also quite non-trivial. Different approaches and software are employed in the literature. These include
the work of [10], who used the software SiDolo to identifiy the Teodosiu model including a sensitivity
analysis. An optimization method that is mainly based on the Levenberg-Marquardt algorithm is used
by [11] as based on the one-element FE package Lagamine [11]. Finally, the model identification is
validated with the help of additional test results from the experiments described in Section 3.

2 Material Model formulation

The current material model formulation is carried out in the framework of the standard inelastic multi-
plicative decomposition F = FEFP of the deformation gradient F [e.g.,[12]]. Such a decomposition arises
naturally, e.g., in the context of the modeling of FP as a change of local reference configuration [13]. In
this context, one obtains in particular the result

RT
ELERE = RT

ELRE −UE LP U−1
E = RT

EṘE + U̇EU−1
E (1)

via the right polar decomposition FE = REUE of FE for the back-rotated form of LE := ḞEF−1
E in terms of

L := ḞF−1 and LP := ḞPF−1
P . For the current case of polycrystalline metals and small elastic strain, we

have

UE = I + lnUE +O(2) ,

U̇E U−1
E = ˙lnUE +O(2) .

(2)
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Substituting these into (1), and taking the symmetric and skew-symmetric parts of the result, one obtains
the evolution relations

˙lnUE = RT
EDRE −DP ,

ṘE = WRE −REWP ,
(3)

for lnUE and RE, respectively, in the incremental context. D := sym(L) is the continuum rate of defor-
mation, DP := sym(LP) its inelastic counterpart, W := skw(L) the continuum spin, and WP := skw(LP)
the plastic spin. Restricting the current formulation to the case of sheet metal forming, it is reasonable
to assume that the texture in these materials achieved during rolling remains largely unchanged dur-
ing forming processes like tension, compression, simple shear, cyclic simple shear, and combinations
of these. In this case, WP is negligible, and the evolution of RE depends only on W, in which case it
reduces to a purely kinematic quantity (i.e., the Jaumann rotation). In addition, focusing in this work on
the material behavior of sheet metal during forming below the forming limit, we assume for simplicity
that damage or any other process resulting in inelastic volume changes are neglible. In this case, plastic
incompressibility det(FP) = 1 pertains, implying tr(DP) = 0 and D ′

P = DP in the incremental context.

Since the elastic range and elastic strain are small, any texture effects from rolling leading to an anisotropic
elastic behavior are assumed negligible. In this case, the isotropic form

M = κ tr(EE)I+2 µ E ′
E (4)

is assumed for the Mandel stress M in terms of the elastic strain EE := lnUE, bulk modulus κ, shear
modulus µ, and deviatoric part E ′

E of EE. Lastly, again in the framework of small elastic strain, M and RE
determine the Kirchhoff stress K via

K = REMRT
E . (5)

Consequently, in contrast to K′ = REM′RT
E, tr(K) = tr(M) of K is independent of RE.

In this framework, then, the material behavior of polycrystalline sheet metal during forming processes
below the forming limit is predominantly determined by a changing dislocation microstructure and at-
tendant evolving anisotropic yield behavior. Besides a shift of the yield surface and its proportional
expansion as in the case of conventional combined hardening, the current model also accounts for an
evolving yield surface shape, i.e., distortional or cross hardening. These are all reflected in the current
yield surface model as given by the form

φ =
√

Σ ·A Σ −σY . (6)

Σ := M−X is the effective stress, X the back stress, and σY := σY0 +r is the yield stress, with σY0 its initial
value. Further, A is an evolving fourth-order traceless symmetric tensor determining changes in shape
of the yield surface due to microstructure development. For the class of materials under consideration,
the evolution of r is modeled by the Voce form

ṙ = cr (sr − r) α̇P (7)

in terms of the corresponding saturation rate cr, and saturation value sr, associated with r. αP is the
accumulated equivalent inelastic deformation. The initial value r0 of r is given by the initial yield stress. In
the current rate-independent context, αP is determined as usual by the consistency condition. Analogous
to the isotropic case, kinematic hardening is modeled via the Armstrong-Frederick form

Ẋ = cx (sx NP −X) α̇P (8)

for kinematic hardening and the evolution of the back stress X depending on corresponding saturation
rate cx and saturation magnitude sx associated with X. NP := DP/|DP| is the direction of the rate of
inelastic deformation

DP = α̇P ∂Σ φ (9)
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modeled in associated form. The initial value of X is assumed to be zero. The current model is completed
by the evolution relation

˙A = cd {sd NP −Ad} α̇P + cl {sl (Idev −NP)−Al} α̇P (10)

for A with NP := NP ⊗NP. Idev is the deviatoric part of the fourth-order identity tensor, Ad = (NP ·A )NP
is the projection of A parallel, and Al = A −Ad is the projection of A orthogonal, to NP. Analogous to
(8), this form is based on the idea of growth and saturation of the dynamic (i.e., current) Ad and latent Al
parts of A . In particular, cd represents the saturation rate, and sd the saturation magnitude, associated
with Ad . Analogously, cl represents the saturation rate, and sl the saturation magnitude, associated with
Al . The initial value A0 of A is determined by any Hill initial flow othotropy due to any texture from
rolling.

The current material model was implemented in the commercial FE codes Abaqus and LS-Dyna via
the user material interfaces provided. Besides the two elasticity parameters κ, µ and the 6 parameters
(e.g., in the sense of Hill: F , G, H, L, M, N) for the initial flow orthotropy, this model contains 8 hardening
parameters cr, sr, cx, sx, cd , sd , cl , sl to be identified using the tests to be described next.

3 Experimental results

The tests were performed by means of biaxial testing machine at Netherlands Institute for Metals Re-
search, University of Twente. The tests performed on the steel LH800 and Steel DC06 consist of reverse
simple shear test with different amounts of pre-strains; plane strain tension tests with different strain rates
and orthogonal tests with and without unloading. Figure 1 shows the results of 2 reverse tests in simple
shear for the two steels.The Bauschinger effect is clearly observed in this figure. For both tests,there is
no clear elasto-plastic transition in the reverse stroke visible.

Figure 1: Reverse shear tests. a) steel DC06. b) steel LH800. Here K12 represents the shear
component of Kirchoff stress and F12 represents component of deformation gradient.

Lastly, consider the results from the orthogonal tests. As stated above, these consist of plane-strain
tension followed by simple shear. The transition from tension to simple shear is carried out either dis-
continuously via intermediate unloading, or continuously from tension to shear at yield, as shown in
Figure 2. For the latter case, 5 different transition paths have been investigated (Figure 3). In the one
extreme (path 1), the orthogonal change is realized via an ”abrupt” reduction in tension and coincident
increase in shear at yield. This is closest to the case of a discontinuous orthogonal loading-path change
(Figure 2). In the other extreme (curve 5), the level of tension is maintained (and further tensile
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Figure 2: Orthogonal experiments on steel LH800 with and without elastic unloading

Figure 3: Experimental strain paths in the investigated steels resulting from continuous change of
loading direction from tension to shear. Leftt: steel LH800. Right: steel DC06

Figure 4: Orthogonal tests with different rate of transition from plane strain tension to simple shear. a)
steel DC06. b) steel LH800. Here K12 represents the shear component of Kirchoff stress, F22
and F12 represent components of deformation gradient.
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deformation occurs) as shear loading increases. As indicated, the other three curves (2, 3, and 4) in
Figure 3 represent intermediate cases between these extremes. The corresponding stress-deformation
results together with the forward simple-shear-based stress-deformation behavior of LH800 are depicted
in Figure 4.

As implied by these results, the nature of the transition from tension to shear is crucial in determing
whether or not cross hardening occurs. In cases 4 and 5, where further tension loading into the shear
loading phase is most pronounced, for example, little or no cross hardening occurs. Asssuming that the
dislocation microstructure developed during the common pre-tension phase was the same in each case,
these results imply that continued tension loading during simultaneous shear loading at yield facilitates a
breakdown of tension-based dislocation microstructure which would otherwise result in cross hardening
upon transition to shear. Besides this, note that the paths with continued tension loading do not return to
the monotonic simple-shear reference curve, i.e., at least not within the range of the experimental data.
These and other aspects will be examined in more detail after we carry out the model identification, to
which we now turn.

4 Model identification and validation

To demonstrate the capability of the presented model to describe the complex hardening behavior of the
steels during non-proportional loading just discussed, we now turn to their identification. As shown by
the results of the last section, this behavior involves in particular isotropic, kinematic, and cross, hard-
ening. The material parameter determination is carried out using the program LS-OPT in conjunction
with LS-DYNA. Given the homogeneous nature of the tests, one-element calculations suffice. The opti-
mization technique used relies on response surface methodology (RSM) [1], a mathematical method for
constructing smooth approximations of functions in a design space. The approximations are based on
results calculated at numerous points in the multi-dimensional design space. In our example, the mate-
rial parameters are the design variables, and the model together with the data determine the objective
function of the corresponding optimization problem.

The fit strategy, and in particular the determination of reasonable starting values for the iterative deter-
mination of material parameter values, exploits the physics of the problem, tests and model. To this
end, forward simple-shear loading data are used to identify the isotropic hardening model assuming no
kinematic or cross hardening. The corresponding parameter values are then used as starting values
to identify the isotropic-kinematic hardening model using data for both forward- and forward-reverse-
shear loading. Analogously, the parameter values from this fit are used as starting values for a fit of the
isotropic-kinematic-cross (i.e., complete) hardening model to forward-shear, forward-reverse-shear, and
tension-shear, loading data. All these fits are based on the fixed values κ = 167.05 GPa and µ = 77.09
for the steel LH800 and κ = 158.33 and µ = 73.07 GPa for the steel DC06, for the elastic properties, as
well as that σY0 = 330.79 and σY0 = 134.353 MPa for the initial yield stresses at room temperature for the
steel LH800 and the steel DC06 respectively.

We begin with the identification of the Voce isotropic hardening model using forward simple-shear data.
The values for the Voce hardening model parameters so obtained are given in Table1. The quality of the
fit can be judged via the comparison of the fitted model with the data in Figure 5.

Parameter Value Units
sr 252.489 MPa
cr 8.289

a)

Parameter Value Units
sr 341.504 MPa
cr 5.8206

b)

Table 1: isotropic hardening parameter values determined from forward simple-shear test data alone:
a) steel DC06 b) steel LH800

Consider next the isotropic-kinematic case. An initial estimate for sx is obtained via the shift in yield stress
between forward and reverse shear. Using this together with isotropic hardening parameter values from
the forward-shear case, the isotropic-kinematic hardening parameters were determined with the help of
corresponding tests. The set of identified parameter values is given in Table 2. As before, the quality of
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Figure 5: Comparison of experimental and numerical results for Voce isotropic model. a) steel DC06 .
b) steel LH800. Here K12 represents the shear component of Kirchoff stress and F12
represents component of deformation gradient.

Parameter Value Units
sr 240.925 MPa
cr 4.707
sx 62.5478 MPa
cx 45.4374

a)

Parameter Value Units
sr 219.727 MPa
cr 2.96
sx 139.625 MPa
cx 15.1893

b)

Table 2: isotropic-kinematic hardening parameters determined from forward- und forward-reverse
simple-shear test data alone: a) steel DC06 b) steel LH800

the model identification can be judged via comparison with the fit data as shown for the current isotropic-
kinematic hardening case in Figure 6.

Figure 6: Comparison of experimental forward-reverse shear data with the identified isotropic-kinematic
hardening model. a) steel DC06. b) steel LH800. Here K12 represents the shear component
of Kirchoff stress and F12 represents component of deformation gradient.

Before we proceed to the complete hardening model, it is instructive to compare the prediction of the
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Figure 7: Comparison of identified Combined hardening model for the forward simple shear and
orthogonal tension-shear test data. a) steel DC06 . b) steel LH800. Here K12 represents the
shear component of Kirchoff stress, F22 and F12 represent components of deformation
gradient.

combined hardening model just identified for the case of orthogonal tension-shear loading with the
corresponding test data represented by path 1 in Figure 3. This in done in Figure 7. Not suprisingly,
the model predicts no cross hardening. Optically, one might be tempted to identify the prediction of the
identified combined model with case 4 or 5 in Figure 3. Since these represent different paths in either
strain or stress space, however, they are not directly comparible.

Consider lastly the identification of the isotropic-kinematic-cross (i.e., complete) hardening model. Again,
this is done with the help of the identified parameter values for the isotropic-kinematic case as starting
values for the fit. In addition, sd contrained to be 0 and sl is constrained to be less that 0. For the
identification, the test data of path 1 in Figure 3 is added to the previous data sets. The results of this
identification are presented in Table 3. The comparison of the corresponding experimental data and
model fit is shown in Figure 8.

Parameter Value Units
sr 240.925 MPa
cr 4.707
sx 62.5478 MPa
cx 45.4374
sd 0.0
cd 16.8335
sl -0.922
cl 7

a)

Parameter Value Units
sr 219.727 MPa
cr 2.96
sx 139.625 MPa
cx 15.1893
sd 0.0
cd 8.29
sl -0.86
cl 5.0

b)

Table 3: isotropic-kinematic-cross hardening model parameter values determined from forward shear,
forward-reverse shear, and from tension-shear, test data: a) steel DC06 b) steel LH800

As a first validation of the model identification presented in this section, we use the identified isotropic-
kinematic-cross hardening model to simulate the behavior of steels along the (other) experimental strain
paths 2 to 5 in Figure 3. The results are shown in Figure 9 and Figure 10 for the steels DC06 and LH800
respectively. Clearly, the agreement between experimental and simulation results is good. Hence,
beyond the realistic representation of complete isotropic-kinematic-cross hardening behavior, the current
model is also capable of accounting for the dependence of the amount of cross hardening arising on the
nature and details of the orthogonal transition from tension to shear.
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Figure 8: Comparison of the identified isotropic-kinematic-cross hardening model behavior with
experimental data for monotonic forward simple shear and orthogonal tension-shear test
data. a) steel DC06 . b) steel LH800. Here K12 represents the shear component of Kirchoff
stress, F22 and F12 represent component of deformations gradient.

Figure 9: Comparison of the experimental results for strain paths 2 to 5 in Figure 3 (right) with
corresponding simulation results as based on the identified model for
isotropic-kinematic-cross hardening. Upper left: path 5. Upper right: path 4. Lower left: path
3. Lower right: path 2. Here K12 represents the shear component of Kirchoff stress and F22
and F12 represents components of deformation gradient.
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Figure 10: Comparison of the experimental results for strain paths 2 to 5 in Figure 3 (left) with
corresponding simulation results as based on the identified model for
isotropic-kinematic-cross hardening. Upper left: path 5. Upper right: path 4. Lower left: path
3. Lower right: path 2. Here K12 represents the shear component of Kirchoff stress and F22
and F12 represents components of deformation gradient.
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