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Motivation for Fibre Metal Laminates in Body Applications

 Lightweight design is considered a key technology for 

competitiveness in current vehicles [SCH17]

 … even in electric vehicles with recuperation

(~35% of energy consumption is mass-dependent)

 Wide range of requirements in structural applications

 Low density, high stiffness, high strength coupled with 

medium/high ductility, good formability, joining, …

 Hybrid materials/”tailored materials” combine different 

materials with different properties to a “better” one

 Here: Sandwich materials 2/1 lay-up (Metal/CFRP/Metal)

 Questions:

 Material choice?

 Manufacturing? Bonding? Cycle times?

 Mass reduction in crash applications?

 Virtual study! Simulation models?

Multi-material design is already present…
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GLARE [TUD15] thyssenkrupp LITECOR® [ATZ14]
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Material Choice and Expectations on “Tailored Materials”

 Steel (MHZ340, 0.25 mm): Established body application steel, good overall properties

 Magnesium alloy (AZ31b, 1.0 mm): Available as sheet, low density and good formability

 CFRP (45±5 %, various thickness): highest lightweight potential, good stiffness/strength
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Manufacturing of FML Sheets with Thermoplastic Matrix

 Thermoset matrix (e.g. GLARE)

 Production of sandwich via autoclave

 Preforming of metal needed

 Problem: High cycle times (hours)

 Thermoplastic PA6 matrix (used here):

 Process developed in LEIKA project

 Pre-production of sandwich sheets

 “Standard” hot forming (fast) for

part production (mostly bending)

 Consolidation of CFRP within 

production process of sandwich

 Activation of adhesion agent and 

bonding via temperature/pressure

 Question: Manufacturing impact on 

material? Temperature induced 

stresses, bonding, consolidation, …

adhesion

agent
metal cover 

layer

polyamide 

foilsC-fibre layers

heating

heatingF F

FF
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Metal

Bonding

Metal

Δα

(symbolic representation)

[PAU17]
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Additional Boundary Conditions when Modelling these FMLs

Influence of Manufacturing

Magnesium AZ31b Anisotropy

Bonding/Delamination

[LOU07]

[NES14]

Full Vehicle Crash Simulation

Residual stresses

(metal, FRP)

Bonding/

adhesion agent

CFRP

consolidation

Process parameters (time,

temperature, pressure)
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Modelling and Calibration Process for FML in Crash Simulation

 Stacked shell modelling using cohesive elements 
(ELFORM 20) and shells (ELFORM 8 with physical 
hourglass control), element size of ~5 mm

 Metals (Steel and Mg): MAT_124

 LC input for tension and compression (needed for 
proper Mg modelling and residual stresses)

 Strain rate depended plasticity (Steel)

 Simplifications: No anisotropy or advanced failure

 CFRP (lay-up of UD tapes): MAT_58

 Sufficient representation, distinct failure

 Cohesive zones: MAT_138 (or CONTACT_TIEBREAK)

 no increased time step size, few parameters

 Disclaimer for test data: Prototype material made in 
laboratory environment

Cohesives

Cohesives

Metal

CFRP
Adhesion

Agent
Shells

Calibration/Validation ProcessModelling Approach

Level
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Interface
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+
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Assembly

Hat profiles

-

Specimen

Specimen
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Calibration of FML on Specimen Level: Tensile Tests

 Mg AZ31b 1,0 mm / CFRP 45 vol% 0.7 mm (total: 2.7 mm)

 Failure strength 25 kN equivalent to 455 MPa averaged stress

 Failure strain of 1.5% comparable to CFRP max. strain

 CFRP (MCM) Young’s Modulus: 100 GPa (0°) slightly lower 

than expected, 10 GPa (90°) much higher than calculated

 St MHZ340 0.25 mm / CFRP 45 vol% 1.5 mm (total: 2.0 mm)

 CFRP (SCS) Young’s Modulus: 90 GPa (0°), 10 GPa (90°)

 Influence of production on CFRP core

Pictures: J. Jaschinski (TU Dresden)

Main influence: Residual

stress in metal (~ 100 MPa)

Main influence:

Stiffness CFRP

Main influence:

Strength CFRP

MCM 0° tensile testMCM 90° tensile test

MCM 0° tensile test



© ika 2018 · All rights reserved2018/10/15Slide No. 8#150 · 18su0045.pptx

Calibration of FML on Specimen Level: Bending Tests

Pictures: J. Jaschinski (TU Dresden)
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Calibration of FML on Component Level: Crush Tests
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Yellow: St MHZ340 outer layer

Red/Blue: CFRP core layer

t = 55 mst = 4 ms t = 8 ms t = 19 ms

Local second buckling

SCS 0° component crush test

 Hat profile SCS with 1.5 mm CFRP core layer

 Impact: 300 kg falling mass with v0=11.5 m/s

 Initial force of 130 kN followed by an energy absorbing 

phase at ~70-80 kN

 Good correlation between simulation and test data/video

 Delamination between CFRP and steel covered
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Calibration of FML on Component Level: Bending Tests

Local failure and

buckling

Large-area failure and

buckling around impactor

SCS 0° component bending test

Higher force due to

large-area buckling

 Hat profile SCS with 1.5 mm CFRP core layer

 Impact: 51 kg falling mass with v0=6.15 m/s

 Initial force of 21 kN (good correlation) followed by an 

energy absorbing phase at ~10-15 kN (deviant behaviour)

 Explanation/current status: Mesh of 5 mm element size 

cannot cover the initial local effect  large-area failure
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Development and Manufacturing of a Prototype

Seat member

MCM-0.7

Floor

Litecor

Tunnel

Lower Long Member

SCS-1.5

Front Tunnel

CMC

Bulkhead Plates

SCS-1.5

Battery Floor

MHZ340 Rib Structure

PA6-GF30

(analogue to MCM)
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Testing of the FML Floor Structure under Crash Load

Fixations

Fixations
Fixation Bar

Rocker Substitute

Steel (3 mm)

High Speed Camera

Fixation (Rocker Substitute)

Screwing (Fixation Bar)
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Test Evaluation and Comparison with Simulation
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max. force/displacement

 Good overall correlation of simulation and test in structural 

behaviour, maximum force and maximum impactor travel

 Rupture of seat member (MCM) is covered in simulation

 Stability of tunnel structure (SCS) is predicted
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Application on Full Vehicle Level – Lightweight Design Study

 Reference vehicle: High strength steel state-of-the-art

 Construction of two floor structures: MCM only, SCS only

(non-crash structures in AZ31b / Steel-Thermoplastic)

 Geometry of FML floor structure considers manufacturing 

and joining constraints (bending, rivets, adhesives)

 Crash analysis targets: same structural key parameters

 Intrusion passenger compartment / battery comp.

 Accelerations 

 Survival space

 Lightweight benefit of SCS floor structure: 23.1%

 energy absorption via buckling and bending

 Lightweight benefit of MCM floor structure: 29.6%

 failure mainly due to rupture and crushing

 If the mass comparison only considers SCS/MCM parts: 

Lightweight benefit with SCS/MCM roughly the same: 

28% overall weight saving, seat members >40%

SCS onlyMCM only
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Conclusion

 Motivation of FMLs in body applications by “tailored” properties

Ductility (metal) + spec. energy absorption (CFRP) + stiffness (sandwich)

 Steel-CFRP and Magnesium-CFRP were chosen as representatives

 Modelling in simulation using stacked shell-approach

 metal and CFRP as shell, cohesive zones as interface

 Production process has high impact on material properties

 new calibration method needed, only metal is calibrated as

monolithic material, CFRP has to be calibrated via FML tests

 Tensile, bending, hat profile tests for calibration, validation via

prototype floor structure in pole crash  Validation success

 interlaminar failure observed in specimen bending (not considered)

 bending of hat profile shows deviant deformation behaviour

 Model was applied on a full vehicle crash model with FML-floor structure 

(SCS and MCM), lightweight study shows 28% possible weight saving

 Components under axial load (unidirectional core) up to 40% savings in 

mass compared to high strength steel reference

t = 55 mst = 4 ms t = 8 ms t = 19 ms
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Thank you for your attention! Questions?
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