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Abstract:

In this article a formulation of an anisotropic finite linear viscoelasticity model is proposed.
In particular, transverse isotropy and orthotropy is considered. The aim of this work is
to establish a material model, which allows the description of an anisotropic material
response in the framework of the finite deformation theory. First of all, the fundamen-
tals of finite hyperelasticity are discussed. In the next step, we consider a finite linear
viscoelastic formulation which is then extended to the theory of anisotropy. After giving
an introduction to the coordinate free representation of anisotropic material behaviour
using isotropic tensor functions in terms of structural tensors, we derive the constitutive
equations for the orthotropic linear viscoelasticity model. This model is implemented into
the nonlinear finite element code LS-DYNA. Both, an explicit and an implicit implemen-
tation is carried out. To evaluate the performance of the model, representative numerical
examples are discussed in detail.
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1. Introduction

Since rubber-like materials have a wide range of applications, the need for the estab-
lishment of constitutive models characterizing highly nonlinear rate-dependent inelastic
material behaviour at finite deformations has tremendously increased. It may be observed
that it is not only an active subject of the current research, but it is also of great impor-
tance in engineering practice. For instance, rubber-like materials are used for modeling
soft tissue in the field of biomechanics. They are widely spread in the field of struc-
tural mechanics as well. For example, the engine mounts as depicted in Figure 1a are an
application in the automotive industry.
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Figure 1: (a) Sectional view of an engine mount (b) Experiments for particle-filled rubber

The material used in a component like the engine mount is a particle-filled rubber made
up of small particles embedded into a softer matrix material. Reinforcement of the rubber
matrix by stiff particles enhances the mechanical properties of the material. A side effect
of the reinforcement is the phenomenon commonly known as Mullin’s effect. Recent stud-
ies have shown that Mullins-type deformation-induced softening is an anisotropic effect
strongly dependent on the deformation history. To this end, we consider a sheet of the
material, which was pre-conditioned in one direction up to an elongation of 100%. After-
wards tensile test specimen were cut out in the direction of the pre-conditioning, denoted
as 0◦, and transverse to this direction, referred to as 90◦. Comparison of the nominal ten-
sile stress-stretch curves in Figure 1b indicates a distinct discrepancy between the fresh
and the pre-conditioned material specimen. The anisotropic nature of the deformation-
induced Mullin’s effect is clearly observed in the stress curves of the pre-conditioned

 
 

 
© 2007 Copyright by DYNAmore GmbH 

 

Material II 6. LS-DYNA Anwenderforum, Frankenthal 2007

D - II - 26



specimens subjected to tension in perpendicular directions. The pre-conditioned material
can be classified as anisotropic.

The intent of this work is the construction of a constitutive model, particularly for trans-
versely isotropic and orthotropic viscoelastic materials at finite deformations. For this
purpose, we first define a polyconvex isotropic free energy function for a hyperelastic and
linear viscoelastic material. Then we continue with the extension of these functions to the
theory of anisotropy at finite deformations in the framework of a coordinate free represen-
tation using structural tensors. Hence, the anisotropic free energy function is formulated
as an isotropic tensor function in terms of the invariants of the argument tensors. In order
to define such a function, a set of irreducible invariants, the so-called integrity basis, needs
to be derived for a transversely isotropic and orthotropic material, whereas the transverse
isotropic intergity basis is included in the orthotropic one.

The outlined model is implemented into LS-DYNA and representative boundary value
problems are considered in a finite element analysis reflecting the underlying anisotropic
rate-dependent material behaviour at finite deformations.

2. Isotropic Finite Elasticity

2.1. Kinematics at Finite Deformations

Consider a nonlinear deformation ϕ : X 7→ x = ϕ(X, t) mapping material points X

from the reference configuration B onto points x of the current configuration S. The
Frechet-derivative, or directional derivative, of the deformation map ϕ is denoted as
the deformation gradient F , defined as

F (X, t) := Dϕ(X, t) =
∂ϕ(X, t)

∂X
with J = det[F ] > 0 . (1)

The deformation gradient F maps tangents dX ∈ TXB to material curves onto tangents
dx ∈ Tx S to deformed curves of the current configuration. TXB and Tx S are the tangent
spaces of the reference and current configuration. With this picture in mind, F is referred
to as the tangent map. Additional mappings for infinitesimal area and volume elements,
the normal and volume map, are given by

da = JF−TdA = cof [F ] dA

dv = JdV . (2)

For a more comprehensive discussion of the fundamentals of continuum mechanics, the
reader is referred to the literature provided by Marsden & Hughes [8] and Malvern
[7].

2.2. Decoupled Volumetric-Isochoric Finite Elasticity

Rubbery polymers exhibit an almost incompressible (infinitely stiff) volumetric response
and a very soft isochoric response. As stated in Ogden [10], a material is said to deform
isochoricly (volume preserving), if its volume does not change locally during the defor-
mation. The incompressibility condition corresponds to J = det[F ] = 1. Owing to the
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incompressibility condition it is reasonable to introduce quantities characterizing the vol-
umetric and isochoric deformation seperately. In order to achieve that, the multiplicative
decomposition

F = F isoF vol (3)

of the deformation gradient is used. The part F vol, which is a spherical tensor accounting
for the entire change of volume, then has to be defined according to

F vol = J
1

3 1 . (4)

A similar restriction as for F vol holds for F iso as well, since the isochoric part of F must
not contribute to the change of volume, i.e. det

[
F iso

]
= 1. Hence, the isochoric part of

the deformation gradient is given by

F iso = F (F vol)−1 = J− 1

3 F =: F̄ . (5)

The volumetric-isochoric split shall also be considered in the formulation of the free energy
function Ψ additivly by

Ψ = Ψvol(J) + Ψiso(F̄ ) . (6)

Motivated from the principle of material symmetry, the isochoric part of the free energy
function can also be expressed in terms of the right Cauchy-Green tensor C = F T F .
The alternative representation of the free energy function Ψ, which we will be used in this
work, then reads

Ψ = Ψvol(J) + Ψiso(C̄) . (7)

2.3. An Incompressible Material Model for Isotropic Finite Elasticity

Before pointing out the specific forms of the free energy function Ψ used for the differ-
ent material models, we discuss the principle of material symmetry and the principle of
material objectivity. A comprehensive treatment is beyond the scope of this work. For a
more detailed treatment, for example the reader is referred to Malvern [7].

Materials may display inherent symmetries allowing certain rotations of the reference
configuration leaving the constitutive response unchanged. This means that for certain
transformations Q ∈ G of the material, the material structure is mapped onto itself such
that no difference is visible in the initial state. The set of the allowed rotations G ⊂ O(3)
is called the symmetry group of the material and O(3) is the orthogonal group with the
properties

O(3) := {Q ∈ R3×3 |QT Q = 1 and det[Q] = ±1} . (8)

Combining the requirement of the principle of material objectivity and the principle of
material symmetry, we arrive at the so-called invariance condition of the reduced form

Ψ̂(QCQT ) = Ψ̂(C) ∀ Q ∈ G . (9)

For the case of isotropy the symmetry group G of the material is identical to the entire
orthogonal group O(3), i.e.

G ≡ O(3) . (10)
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If we restrict ourselves to transformations Q belonging to the special orthogonal group
SO(3) ⊂ O(3) with the properties

SO(3) := {Q ∈ R3×3 |QT Q = 1 and det[Q] = +1} , (11)

we end up with
Ψ̂(QCQT ) = Ψ̂(C) ∀ Q ∈ SO(3) . (12)

Note that due to the restriction to the special orthogonal group SO(3) as the symmetry
group of the material, it will be sufficient to find an integrity basis for symmetric second-
order tensors and vectors, which will be discussed, when considering anisotropy in Section
4.1. It can be shown that together with the spectral representation of the right Cauchy-
Green tensor, the isotropy condition (9) may only be satisfied, if the free energy function
Ψ does not depend on the principal directions but only on the eigenvalues of F . Then, a
representation of an isotropic free energy function has the form

Ψ = Ψ̃(λ1, λ2, λ3) , (13)

where λ1, λ2 and λ3 stand for the principal stretches. Since the principal invariants of the
right Cauchy-Green tensor are symmetric functions of the principal stretches

I1 = tr[C] = λ2
1 + λ2

2 + λ2
3

I2 =
1

2
(tr[C] 2 − tr

[
C2

]
) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 (14)

I3 = det[C] = λ2
1λ

2
2λ

2
3 ,

we may also constitute an isotropic free energy function Ψ as a function of the invariants
of F , i.e.

Ψ = Ψ̂(I1, I2, I3) . (15)

Recall that the incompressibility condition requires J = det[F ] =
√

det[C] = 1, consid-
ering the isochoric part C̄ of the right Cauchy-Green tensor in the formulation and
insertion into (14), we obtain the isochoric invariants

Ī1 = tr
[
C̄

]

Ī2 =
1

2
(tr

[
C̄

]
2 − tr

[

C̄
2
]

) (16)

Ī3 = det
[
C̄

]
= 1 . (17)

Since Ī3 is constant, the free energy function Ψ does not depend on the third invariant
and therefore it is sufficient to formulate the free energy

Ψ = Ψ̂(Ī1, Ī2) . (18)
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Volumetric and Isochoric 2nd Piola-Kirchhoff Stresses

Following Coleman’s method, the 2nd Piola-Kirchhoff stresses are derived from the
free energy function according to

S = 2∂CΨ = 2∂C(Ψvol + Ψiso) = Svol + Siso . (19)

The isochoric part of the 2nd Piola-Kirchhoff stress tensor is derived from the free
energy function using the chain-rule operation, i.e.

Siso = 2∂CΨiso = 2∂
C̄

Ψiso : ∂CC̄ = S̄
iso

: Q , (20)

where S̄
iso

:= 2∂
C̄

Ψiso and Q = J− 2

3

[
I − 1

3
C ⊗ C−1

]
. For the derivations of (20) and the

upcoming equations we make use of the results

∂CJ =
1

2
JC−1 (21)

∂CC = I , {I}ijkl :=
1

2
[δikδjl + δilδjk] (22)

∂CC−1 = −IC−1 , {IC−1}ijkl :=
1

2

[
C−1

ik C
−1
jl + C−1

il C
−1
jk

]
. (23)

In order to calculate the isochoric chain-rule stresses S̄
iso

, we claim a free energy function
being expressed in the first and second principal invariants Ī1 and Ī2. We obtain the
expression

S̄
iso

= 2∂
C̄

Ψ̂iso(Ī1, Ī2) = 2(∂Ī1
Ψ̂iso ∂

C̄
Ī1 + ∂Ī2

Ψ̂iso ∂
C̄
Ī2) . (24)

Together with the derivatives of the invariants Ī1 and Ī2 with respect to C̄

∂
C̄
Ī1 = 1 and ∂

C̄
Ī2 = (Ī11 − C̄) , (25)

we obtain the general expression for the chain rule 2nd Piola-Kirchhoff stresses, i.e.

S̄
iso

= 2
[

∂Ī1
Ψ̂iso 1 + ∂Ī2

Ψ̂iso (Ī11 − C̄)
]

(26)

Owing to the fairly good fitting performance of the hyperelasticity model proposed by
Yeoh [21] in comparison with the benchmark data provided by Treloar [19], we use
the free energy function

Ψiso = ψ̂iso(Ī1) = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3 (27)

for the isotropic elastic contribution. Together with (26) and the derivatives (25), we
arrive at

S̄
iso

= 2
[
C10 + 2C20(Ī1 − 3) + 3C30(Ī1 − 3)2

]
1 . (28)
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To complete the equation for the stresses, we need to define the volumetric part of the
2nd Piola-Kirchhoff stresses

Svol = 2∂CΨvol(J) = 2 ∂JΨvol

︸ ︷︷ ︸

Ψvol′

∂CJ
(21)
= JΨvol′

︸ ︷︷ ︸

=:p

C−1 . (29)

The quantity p in equation (29) is denoted as the hydrostatic pressure. The hydrostatic
pressure is derived from the penalty function Ψvol(J), which is necessary in order to ensure
incompressibility in a numerical framework. Various definitions of such penalty functions
may be extracted from the literature provided by Simo & Taylor [15] or Miehe [9]
among others.

Volumetric and Isochoric Lagrangian Moduli

When deriving a formulation, which may also be implemented into an implicit finite
element code, the derivation of the moduli is inevitable. The sensitivity of the stresses to
the deformation for nonlinear elastic materials is characterized by the rate expression

Ṡ = C :
1

2
Ċ , (30)

where the fourth order tensor C represents the Lagrangian moduli. They are obtained by
comparing the time derivative of S to the rate expression stated above.

S = 2∂CΨ

Ṡ = 2∂2
CCΨ : Ċ = 4∂2

CCΨ :
1

2
Ċ (31)

Hence, the Lagrangian moduli are identified as

C := 4∂2
CCΨ . (32)

In the first step of the derivation of the additive representation of the Lagrangian moduli

C = Cvol + Ciso , (33)

we consider the isochoric contribution Ciso, i.e.

Ciso := 4∂2
CCΨiso(C̄)

(20)
= 2∂C(S̄

iso
: Q)

= QT : C̄iso : Q + S̄
iso

: M (34)

introducing (Qmnij)
T = Qijmn. In equation (34) we defined the sixth-order tensor M

M =
2

3
J− 2

3

{
1

3
C ⊗ C−1 ⊗ C−1 − I⊗̃C−1 + C ⊗ IC−1 − I ⊗ C−1

}

, (35)

where we defined
{
I⊗̃C−1

}

mnijkl
= ImnklC

−1
ij in order to make the representation of M in

closed format possible. The only tensor remaining undetermined in equation (34) is C̄iso.
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Its specific form depends on the underlying elastic potential Ψiso. As done for the isochoric
part of the 2nd Piola-Kirchhoff stresses, we will state a general representation of C̄iso

for a free energy function of the form Ψiso = Ψ̂iso(Ī1, Ī2). It reads

C̄iso = 4∂2
C̄C̄

Ψiso(Ī1, Ī2) = 4∂
C̄

(∂Ī1
Ψiso ∂Ī1

∂C̄
+ ∂Ī2

Ψiso ∂Ī2
∂C̄

) . (36)

Utilizing the free energy function of Yeoh’s model, after some steps we arrive at

C̄iso = 8(C20 + 3C30(Ī1 − 3))1 ⊗ 1 . (37)

With all the tensors at hand, the isochoric part of the Lagrangian moduli Ciso can be
calculated. In order to complete the additive representation of the total Lagrangian
moduli C, only the volumetric part Cvol remains to be determined. The expression needed
for the derivation is obtained directly from equation (32), i.e.

Cvol = J(Ψvol′ + JΨvol′′)C−1 ⊗ C−1 − 2JΨvol′IC−1 (38)

Up to now, we have derived a three-dimensional representation of Yeoh’s model for
isotropic hyperelasticity at finite deformations.

3. Isotropic Finite Linear Viscoelasticity

In the previous section, we derived a finite hyperelasticity model, which is capable of
describing the material behaviour of isotropic elastic rubber-like materials. This model
will be extended to finite linear viscoelasticity within the forthcoming section. For more
comprehensive literature concerning the subject of linear viscoelasticity, also refer to the
standard textbooks written by Simo & Hughes [16], Malvern [7] and Christensen
[3], or to the works of Simo [14], Govindjee [4] and Kaliske & Rothert [6] among
many others.

3.1. Three-Dimensional Linear Viscoelasticity at Finite Strains

The next step in modeling viscoelastic materials is enabling a description valid for finite
deformations. There are various approaches to the description of linear viscoelastic ma-
terial behaviour at finite strains. The approach here is to consider the overall viscoelastic
response with the volumetric-isochoric split, which is outlined in what follows.

3.1.1. Finite Linear Viscoelasticity with Volumetric-Isochoric Split

At this point, we assume that the viscous effects only have an isochoric contribution.
Therefore, the volumetric deformations are considered as purely elastic. To this end, we
use a free energy function having the general form

Ψ(C,A1,A2, ...,Anv
) = Ψvol(J) + Ψiso(C̄,Ai)

= Ψvol(J) + Ψe(C̄) +

nv∑

i=1

Ψv
i (C̄,Ai) ,
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where the elastic and viscous part remain seperated. For the finite deformation case, the
additive split of the 2nd Piola-Kirchhoff stresses reads

S = Svol + Siso , (39)

where

Svol = JΨ′
vol(J)C−1

Siso = J− 2

3 DEV

[

S̄
e

iso +

nv∑

i=1

Q̄i

]

= Se
iso +

nv∑

i=1

Qi (40)

with

S̄
e

iso = 2∂C̄Ψe(C̄)

Q̄i = 2∂C̄Ψv
i (C̄,Ai)

DEV [• ] = [• ] :

[

I −
1

3
C ⊗ C−1

]

. (41)

For the computation of the isochoric viscous overstresses Q̄i we make use of the evolution
equation

˙̄Qi +
1

τi
Q̄i = βi

d

dt

(
DEV

[
S̄

e

iso

])
(42)

proposed by Simo [14]. Note that integration of this evolution equation using the mid-
point rule yields symmetric consistent Lagrangian moduli. The differential equation (42)
can be solved by using the convolution form. Hence, we have to consider the identity

d

dt

[

exp

{
t

τi

}

Q̄i

]

= exp

{
t

τi

}

βi

d

dt

(
DEV

[
S̄

e

iso

])
. (43)

Following the integration from 0 to t, using the fundamental theorem of calculus and
employing the initial condition Q̄i(t = 0) = 0 , we get the representation for the viscous
stresses as a function of time, i.e.

Q̄i(t) = exp

{

−
t

τi

}

Q̄i(0)

︸ ︷︷ ︸

= 0

+

∫ t

0

exp

{

−
(t− s)

τi

}

βi

d

ds

(
DEV

[
S̄

e

iso

])
ds (44)

Following the well known steps, the equation above is solved using the convolution integral.
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3.1.2. Algorithmic Setting for the Finite Strain Implementation

The convolution integral appearing in (44) must be treated numerically in order to come
to a solution. To this end, we consider a time discretization with ∆t = tn+1 − tn. When
doing so, Q̄

n+1
i can be written as

Q̄
n+1
i = exp

{

−
∆t

τi

}∫ tn

0

exp

{

−
(tn − s)

τi

}

βi

d

ds

(
DEV

[
S̄

e

iso

])
ds

︸ ︷︷ ︸

= Q̄
n
i

+

∫ tn+1

tn

exp

{

−
(tn+1 − s)

τi

}

βi

d

ds

(
DEV

[
S̄

e

iso

])
ds

= exp

{

−
∆t

τi

}

Q̄
n

i +

∫ tn+1

tn

exp

{

−
(tn+1 − s)

τi

}

βi

d

ds

(
DEV

[
S̄

e

iso

])
ds . (45)

The second term on the right hand side of equation (45) may be integrated by making
use of the mid-point rule, which is second-order accurate and unconditionally stable. Also
setting

d

ds

(
DEV

[
S̄

e

iso

])
=

(DEV
[

S̄
e,n+1
iso

]

− DEV
[
S̄

e,n

iso

]
)

∆t
,

in equation (45) and collecting the terms belonging to time tn, we obtain the update
equation for the viscous stresses at time tn+1 according to

Q̄
n+1
i = H̄

n

i + exp

{

−
∆t

2τi

}

βiJ
2

3

n+1S
e,n+1
iso

with H̄
n+1
i = exp

{

−
∆t

τi

}

Q̄
n+1
i − exp

{

−
∆t

2τi

}

βiJ
2

3

n+1S
e,n+1
iso . (46)

In this representation H̄
n

i are the history variables to be stored in a finite element imple-
mentation. The total 2nd Piola-Kirchhoff stresses at time tn+1 then follow according
to

S n+1 = S n+1
vol + S n+1

iso .

The specific form of the isochoric 2nd Piola-Kirchhoff stresses will be derived in the
following.

S n+1
iso = J

− 2

3

n+1 DEV

[

S̄
e,n+1
iso +

nv∑

i=1

Q̄
n+1
i

]

(46)
= S

e,n+1
iso + J

− 2

3

n+1 DEV

[
nv∑

i=1

(

H̄
n

i + exp

{

−
∆t

2τi

}

βiJ
2

3

n+1S
e,n+1
iso

)]

= S
e,n+1
iso +

nv∑

i=1

βi exp

{

−
∆t

2τi

}

S
e,n+1
iso +

nv∑

i=1

J
− 2

3

n+1 DEV
[
H̄

n

i

]
, (47)

where we made use of the identity

DEV [DEV [• ] ] = DEV [• ] , (48)
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leading to

DEV
[
S

e,n+1
iso

]
= S

e,n+1
iso = J

− 2

3

n+1 DEV
[

S̄
e,n+1
iso

]

. (49)

Also defining

Hn
i = H̄

n

i : Qn+1 = J
− 2

3

n+1 DEV
[
H̄

n

i

]
, (50)

we finally arrive at the representation for the isochoric 2nd Piola-Kirchhoff stresses

S n+1
iso =

[

1 +

nv∑

i=1

βi exp

{

−
∆t

2τi

}]

︸ ︷︷ ︸

=: g(∆t)

S
e,n+1
iso +

nv∑

i=1

H̄
n

i : Qn+1 (51)

The volumetric part of the 2nd Piola-Kirchhoff stresses at time tn+1 are obtained from
(40), i.e.

S n+1
vol = Jn+1Ψ

′
vol(Jn+1)C−1

n+1 . (52)

To finalize the formulation, we once more have to derive the equations for the symmetric
consistent Lagrangian moduli

C = Cvol + Ciso , (53)

where the specific form of the volumetric part is

Cvol = 2∂CSvol =
(
J2 Ψ′′

vol(J) + JΨ′
vol(J)

)
C−1 ⊗ C−1 − 2JΨ′

vol(J) IC−1 (54)

and the isochoric part is given by the expression

Cn+1
iso = ∂Cn+1

(
Sn+1

iso

)

=

[

1 +

nv∑

i=1

βi exp

{

−
∆t

2τi

}]

︸ ︷︷ ︸

=: g(∆t)

C
e,n+1
iso +

nv∑

i=1

H̄
n

i : Mn+1 , (55)

where

C
e,n+1
iso = QT

n+1 : C̄
e,n+1
iso : Qn+1 + S̄

e,n+1
iso : Mn+1

S̄
e,n+1
iso = 2∂C̄Ψe(C̄n+1)

C̄
e,n+1
iso = 4∂2

C̄C̄
Ψe(C̄n+1) = 2∂C̄S̄

e,n+1
iso . (56)

4. Anisotropic Finite Linear Viscoelasticity

Up to now we have derived the governing equations necessary for describing isotropic
elastic and linear viscoelastic material behaviour. To make the introduction of the notion
of anisotropy as comprehensive as possible, the basic terms and definitions are given,
which then are applied to the finite deformation theory. Several aspects of the theory
of invariants are discussed, which is inevitable for describing the anisotropic material
response at finite deformations, because we account for the anisotropy using a coordinate
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free representation with structural tensors. In the last step, we postulate a concrete
free energy function and derive the governing equations for an orthotropic finite linear
viscoelasticity model, in which transverse isotropy is included as a special case.

For an in-depth discussion of the subject of anisotropy, also consider the literature pro-
vided by Boehler [2], Truesdell & Noll [20], Spencer [17, 18], Apel [1] ,Rieger
[11] and Schröder [12] among many others.

4.1. Definition of an Anisotropic Material

As already outlined in Section 3.1, a material is called anisotropic, if an arbitrary trans-
formation Q applied to the material’s internal structure does not map the structure onto
itself and therefore leads to a different stress response. Since we consider a coordinate
free representation of anisotropy in terms of isotropic tensor functions using structural
tensors, the function Ψ with the extended set of arguments is an isotropic tensor function,
if

Ψ̂(QCQT ,QMQT ) = Ψ̂(C,M) ∀ Q ∈ SO(3) (57)

holds, where M is the constant second-order structural tensor characterizing the direc-
tional dependence of the particular anisotropic response. Again, M must be defined such
that

Ψ̂(QCQT ,M) = Ψ̂(C,M) ∀ Q ∈ G ⊂ SO(3) . (58)

When trying to express the free energy function Ψ as an isotropic tensor function with sev-
eral arguments, we need to establish a so-called integrity basis, which defines a minimum
number of invariants for a particular set of argument tensors. Tables of such integrity
bases may be found in Spencer [17, 18] and Boehler [2].

For a symmetric second-order tensor A the minimal integrity basis reads

tr[A], tr
[
A2

]
, tr

[
A3

]
, (59)

which are the basic invariants {Ji}i=1,2,3 of the tensor A. Note that it is also possible to
state the minimal integrity basis in terms of the principal invariants {Ii}i=1,2,3. They are
linked to the basic invariants according to

J1 = I1

J2 = I2
1 − 2I2

J3 = I3
1 − 3I1I2 + 3I3 . (60)

When considering two symmetric second-order tensors A and B, the minimal integrity
basis is given by

tr[A], tr
[
A2

]
, tr

[
A3

]
, tr[B], tr

[
B2

]
, tr

[
B3

]
,

tr[AB], tr
[
AB2

]
, tr

[
A2B

]
, tr

[
A2B2

]
. (61)

It consists of the basic invariants of the two argument tensors and the so-called mixed
invariants composed of the two. In the case of three symmetric second-order tensors A,
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B and C, the minimal integrity basis comprises the correspondent invariants stated in
equations (59) and (61) and the additional terms

tr[ABC], tr
[
A2BC

]
, tr

[
B2CA

]
, tr

[
C2AB

]
,

tr
[
A2B2C

]
, tr

[
B2C2A

]
, tr

[
C2A2B

]
. (62)

Since we will deal with an orthotropic material in the following, the minimal integrity
basis of three symmetric second-order tensors is sufficient.

4.2. Minimal Integrity Basis for an Orthotropic Material

An orthotropic material has three preferred directions. These three directions a1, a2 and
a3 compose an orthonormal basis. The symmetry group of an orthotropic material is
characterized by

G = {1,−1,Qπ
⊥a1

,Qπ
⊥a2

,Qπ
⊥a3

,D1,D2,D3} , (63)

Here, Qπ
⊥a1

,Qπ
⊥a2

and Qπ
⊥a3

are reflections with respect to the planes (a2,a3), (a3,a1)
and (a1,a2), which are perpendicular to the three anisotropy directions. The composition
of two reflections is denoted as {Di}i=1,2,3, i.e. D1 = Qπ

⊥a2
Qπ

⊥a3
. One can think of an

orthotropic material as a material composed of two different fibers, which lie perpendicular
to each other. The third anisotropy direction is defined by the cross product of these
two fiber directions. The second-order structural tensors are calculated with the dyadic
product of the preferred directions {ai}i=1,2,3 with themselves, i.e.

M i := ai ⊗ ai ∀ i = 1, 2, 3 . (64)

As mentioned above, the structural tensors have to be invariant under rotations Q out of
the symmetry group G, which means that they have to satisfy the condition

M i = QM iQ
T ∀ Q ∈ G . (65)

Therefore, the free energy function Ψ to be established consequently is an isotropic tensor
function in terms of the argument tensors C̄,M 1,M 2 and M 3. Due to the fact that the
three vectors a1,a2 and a3 are orthonormal and a3 = a1 ×a2 holds, the third anisotropy
direction may be expressed in terms of the other two. Hence, the second-order tensor M 3

of the third direction is linearly dependent on M 1 and M 2. The condition arising from
this reads

M 3 = 1 − M 1 − M 2 (66)

and therefore the free energy function Ψ of an othotropic material is only dependent
on the isochoric part of the right Cauchy-Green tensor C̄ and on the two structural
tensors M 1 and M 2, i.e.

Ψ = Ψ̂(C̄,M 1,M 2) . (67)

Since an important feature of the structural tensors is their orthogonality, the scalar
product of two of these second-order tensors must equal zero

M 1 : M 2 = (a1 ⊗ a1) : (a2 ⊗ a2) = 0 . (68)
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As a result of this orthogonality condition, the mixed invariants stated in equation (62)
may be omitted when defining the minimal integrity basis. In addition to this, one has
to consider that the first-order anisotropy tensors {ai}i=1,2,3 are of unit length, this is
‖ai‖ = 1 for i = 1, 2, 3 . From this follows that every power of a structural tensor is the
structural tensor itself

M 2
i = M i ∀ i = 1, 2, 3 . (69)

Taking equations (66) and (69) into account, the integrity basis of an orthotropic material
composed of the basic and mixed invariants of the isochoric right Cauchy-Green tensor
and the two structural tensors M = a1 ⊗ a1 and N = a2 ⊗ a2 is given by

I = {J̄1, J̄2, J̄3, J̄4, J̄5, J̄6, J̄7, ĪM, ĪM} , (70)

or with the definitions of the invariants

I =
{

tr
[
C̄

]
, tr

[

C̄
2
]

, tr
[

C̄
3
]

, tr
[
C̄M

]
, tr

[

C̄
2
M

]

,

tr
[
C̄N

]
, tr

[

C̄
2
N

]

, tr[M ], tr[N ]
}

. (71)

Note that the traces of the structural tensors are constant, i.e. tr[M ] = 1 and tr[N ] =
1. An alternative representation of equations (70) and (71) would be a mixture of the
principal invariants {Ii}i=1,2,3 and the mixed invariants {Jj}j=4,5,6,7

I = {Ī1, Ī2, Ī3, J̄4, J̄5, J̄6, J̄7, ĪM, ĪM} , (72)

which leads to

I =
{

tr
[
C̄

]
, tr

[
cof C̄

]
, det

[
C̄

]
, tr

[
C̄M

]
, tr

[

C̄
2
M

]

,

tr
[
C̄N

]
, tr

[

C̄
2
N

]

, tr[M ], tr[N ]
}

. (73)

Since Ī3 = det
[
C̄

]
= 1, this invariant has not to be included in the free energy function.

Equations (70) and (72) state the minimal integrity basis necessary for describing the free
energy function of an orthotropic material by means of an isotropic tensor function.

4.3. Orthotropic Elasticity

In the previous section, we have provided the framework for the definition of a free energy
function Ψ accounting for orthotropic material behaviour. In this section we establish a
concrete form of such a free energy function for an orthotropic elastic material and we de-
rive the constitutive equations for the 2nd Piola-Kirchhoff stresses and the Lagrangian
moduli.

We stick to the premise that the free energy function is split additively into volumetric
and isochoric parts. Additionally, we split the isochoric part into an isotropic and an
anisotropic part according to

Ψ(C̄,M ,N) = ΨI(C̄) + ΨA(C̄,M ,N) , (74)
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where the subscripts I and A stand for isotropic and anisotropic, respectively. The su-
perscript iso is dropped in the equation above, since only the isochoric part of the free
energy function Ψ is considered in the following. For the definition of the free energy
function, we make use of the integrity basis stated in equation (72). The isotropic elastic
part is characterized by the free energy function of Yeoh’s model

ΨI = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3

and the anisotropic part will be represented by the isotropic polynomial tensor function

ΨA = αe1(J̄4 − 1)2 + αe2K11 + αe3(J̄6 − 1)2 + αe4K12 , (75)

where K11 and K12 are polyconvex polynomials in terms of non-polyconvex invariants J̄5,
J̄4Ī1, J̄7 and J̄6Ī1. According to Schröder & Neff [13], they are defined as follows

K11 = (J̄5 − 1) − (Ī1 − 3)(J̄4 − 1) + (Ī2 − 3)

K12 = (J̄7 − 1) − (Ī1 − 3)(J̄6 − 1) + (Ī2 − 3) . (76)

Note that K11 holds for the preferred direction a1 and K12 accounts for the preferred
direction a2. Hence, the preferred directions a1 and a2 are decoupled in equation (75).
Therefore, the model may also be used in order to describe transverse isotropy when
setting either αe1 = αe2 = 0 or αe3 = αe4 = 0, respectively. The entire free energy
function unavoidably needs to be extended according to

Ψ = ΨI + ΨA + ΨM + ΨN , (77)

where ΨM and ΨN are functions which are introduced in order to fulfill the condition
of a stress free reference configuration with respect to the so-called tensor generators M

and N . In our case they are identified as

ΨM = −2αe2(J̄4 − 1)

ΨN = −2αe4(J̄6 − 1) .

Since we now have defined the free energy function for the orthotropic elasticity model,
we need to derive the 2nd Piola-Kirchhoff stresses and the Lagrangian moduli.

2nd Piola-Kirchhoff Stresses

As already done in equation (20), the isochoric part of the 2nd Piola-Kirchhoff stresses
is derived from the free energy function according to

Siso = 2∂CΨiso = 2∂
C̄

Ψiso : ∂CC̄ = S̄
iso

: Q .

Since Ψ is expressed in terms of the invariants, we obtain the following equation for the
isochoric chain rule stresses

S̄
iso

= 2
∑

Li∈I\ĪM ,ĪN

∂Ψ

∂Li

∂Li

∂C̄
(78)
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The tensor generators ∂C̄Li are given by

∂C̄L1 := ∂C̄Ī1 = 1

∂C̄L2 := ∂C̄Ī2 = (Ī11 − C̄)

∂C̄L4 := ∂C̄J̄4 = M

∂C̄L5 := ∂C̄J̄5 = (MC̄ + C̄M)

∂C̄L6 := ∂C̄J̄6 = N

∂C̄L7 := ∂C̄J̄7 = (NC̄ + C̄N) (79)

and the derivatives of the free energy function with respect to the invariants ∂Li
Ψ read

∂Ī1Ψ =
[
C10 + 2C20(Ī3 − 3) + 3C30(Ī3 − 3)2 − (αe2(J̄4 − 1) + αe4(J̄6 − 1))

]

∂Ī2Ψ = (αe3 + αe4)

∂J̄4
Ψ =

[
2αe1(J̄4 − 1) − 2αe2

]

∂J̄5
Ψ = αe2

∂J̄6
Ψ =

[
2αe3(J̄6 − 1) − 2αe4

]

∂Ī7Ψ = αe4 (80)

Application of equation (78) to (77) and making use of equations (79) and (80) yields

S̄
iso

= f11 + f2 C̄ + f3 M + f4 (MC̄ + C̄M) + f5 N + f6 (NC̄ + C̄N) , (81)

with the scalar valued functions {fi}i=1,...,6, which are polynomials in terms of the invari-
ants of the integrity basis I. For the specific free energy function defined above, they
have the form

f1 := 2C10 + 4C20(Ī3 − 3) + 6C30(Ī3 − 3)2

+ 2(αe2 + αe4)Ī1 − 2(αe2(J̄4 − 1) + αe4(J̄4 − 1))

f2 := − 2(αe2 + αe4) = const.

f3 := 4αe1(J̄4 − 1) − 2αe2(Ī1 − 3) − 4αe2

f4 := 2αe2 = const.

f5 := 4αe3(J̄6 − 1) − 2αe4(Ī1 − 3) − 4αe4

f6 := 2αe4 = const. (82)

Lagrangian Moduli

The isochoric part defined in equation (34) reads

Ciso = QT : C̄iso : Q + S̄
iso

: M

and for the isochoric chain rule moduli C̄iso we obtain the following general form
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C̄iso = 4
∑

Li ∈I \ĪM ,ĪN




∑

Lj ∈I \ĪM ,ĪN

[
∂2Ψ

∂Li∂Lj

Li

C̄
⊗
Lj

C̄
+
∂Ψ

∂Li

∂2Li

∂C̄∂C̄

]


 (83)

For the non-zero second derivatives of the free energy function, we get

∂2
Ī1Ī1

Ψ =
[
2C20 + 6C30(Ī3 − 3)

]

∂2
Ī1J̄4

Ψ = −αe2

∂2
Ī1J̄6

Ψ = −αe4

∂2
J̄4Ī1

Ψ = −αe2

∂2
J̄4J̄4

Ψ = 2αe1

∂2
J̄6Ī1

Ψ = −αe4

∂2
J̄6J̄6

Ψ = 2αe3

In an analogous manner we obtain the non-zero second derivatives of the tensor generators
defined in equation (79). We end up with

∂2
C̄C̄

Ī2 = 1 ⊗ 1 − I

∂2
C̄C̄

J̄5 = (M ⊗̃1 + 1⊗̃M)

∂2
C̄C̄

J̄7 = (N⊗̃1 + 1⊗̃N) , (84)

using the definition
{
A⊗̃B

}

ijkl
:= 1

2
(AikBjl + BikAil). With these results at hand, the

Lagrangian chain rule moduli read

C̄iso = g1 1 ⊗ 1 + g2 (M ⊗ 1 + 1 ⊗ M) + g3 M ⊗ M + g4 (M⊗̃1 + 1⊗̃M)

+ g5 I + g6 (N ⊗ 1 + 1 ⊗ N) + g7 N ⊗ N + g8 (N⊗̃1 + 1⊗̃N) , (85)

with the scalar valued functions {gi}i=1,...,8, which are also polynomials in terms of the
invariants of the integrity basis I. They have the form

g1 :=
[
8C20 + 24C30(Ī3 − 3) + 4(αe2 + αe4)

]

g2 := −4αe2 = const.

g3 := 8αe1 = const.

g4 := 4αe3 = const.

g5 := −4(αe2 + αe4) = const.

g6 := −4αe4 = const.

g7 := 8αe3 = const.

g8 := 4αe4 = const. (86)

The equation for C̄iso completes the formulation of the orthotropic elastic material model
at finite deformations.
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4.4. Orthotropic Finite Linear Viscoelasticity

The aim of this section is the definition of a Helmholtz free energy function for an or-
thotropic linear viscoelaticity model and the derivation of the constitutive equations, see
also the recent work by Holzapfel & Gasser [5].

The free energy function is stated in an analogous fashion to the isotropic linear viscoelas-
ticity model in Section 3.1.1. To make a clearer distinction between the internal strain-like
variables and the preferred directions a1,a2 and a3, the latter are denoted as a, b and
c. We preserve the volumetric-isochoric split of the free energy function and in a further
step we additionally split the isochoric part into an elastic and a viscous contribution
according to

Ψiso(C̄,M ,N ,I i,Aj,Bk) = Ψe(C̄,M ,N) + Ψv(C̄,M ,N ,I i,Aj ,Bk) (87)

where M := a ⊗ a and N := b ⊗ b are the structural tensors for the corresponding pre-
ferred direction, I i are the strain-like internal variables for the isotropic linear viscoelastic
part and Aj as well as Bk stand for the strain-like internal variables corresponding to the
directions a and b, respectively. Also we split both the elastic and viscous part of the free
energy function into an isotropic part with the subscript I and an anisotropic part with
the subscript A. We arrive at

Ψe(C̄,M ,N) = Ψe
I(C̄) + Ψe

A(C̄,M ,N)

Ψv(C̄,M ,N ,Ii,Aj ,Bk) =

nI
v,i∑

i=1

Ψv
i (C̄,I i) +

nA
v,j∑

j=1

Ψv
j (C̄,M ,Aj) +

nA
v,k∑

k=1

Ψv
k(C̄,N ,Bk) .

(88)

Observe that the formulation as stated in equation (88) allows the use of a different
number of Maxwell-Branches for the isotropic viscoelastic part (nI

v,i) as well as for the
anisotropic part (nA

v,j ,n
A
v,k).

Algorithmic 2nd Piola-Kirchhoff Stresses

Since the general shape of the free energy function is described in the equations above,
we derive the isochoric 2nd Piola-Kirchhoff chain rule stresses S̄

iso
. Again, we drop

the superscript iso which leads to

S̄ = 2∂C̄Ψiso = S̄
e

I + S̄
e

A + S̄
v

I + S̄
v

A

= 2∂C̄Ψe
I + 2∂C̄Ψe

A + 2∂C̄Ψv
I + 2∂C̄Ψv

A , (89)

where

S̄
v

I =

nI
v,i∑

i=1

Q̄
I

i

S̄
v

A =

nA
v,j∑

j=1

Q̄
A

a,j +

nA
v,k∑

k=1

Q̄
A

b,k (90)
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stand for the isotropic and anisotropic visous overstresses. The evolution equations for
the isotropic viscous overstresses are obtained from

˙̄QI
i +

1

τi
Q̄

I

i = βi

d

dt

[

Ŝ
e

I

]

, (91)

with

Ŝ
e

I := DEV
[
S̄

e

I

]
= S̄

e

I :

[

I −
1

3
C ⊗ C−1

]

. (92)

Following the same procedure as described in Section 3.1.1, the update equations for the
isotropic viscous overstresses read

Q̄
I,n+1
i = H̄

n

I,i + exp

{

−
∆t

2τi

}

βi Ŝ
e,n+1

I

with H̄
n+1
I,i = exp

{

−
∆t

τi

}

Q̄
I,n+1
i − exp

{

−
∆t

2τi

}

βi Ŝ
e,n+1

I . (93)

Since we now consider an orthotropic material, we also have to consider the evolution
equations for the viscous overstresses associated with the preferred directions a and b.
Note that the evolution of the stresses in both directions is not coupled explicitly. There-
fore, we need to derive seperate evolution equations for both directions. This allows us to
employ different relaxation times τa,j and τb,k for either direction, which may also differ
from the isotropic relaxation times τi.

First of all, we consider the evolution equation for direction a, which is given by

˙̄QA
a,j +

1

τa,j

Q̄
A

a,j =
d

dt

[

Ŝ
v,0

A,j

]

, (94)

with

Ŝ
v,0

A,j := DEV
[

S̄
v,0
A,j

]

= S̄
v,0
A,j :

[

I −
1

3
C ⊗ C−1

]

. (95)

In this case the update equation reads

Q̄
A,n+1
a,j = H̄

n

A,j + exp

{

−
∆t

2τa,j

}

Ŝ
v,0,n+1

A,j

with H̄
n+1
A,j = exp

{

−
∆t

τa,j

}

Q̄
A,n+1
a,j − exp

{

−
∆t

2τa,j

}

Ŝ
v,0,n+1

A,j . (96)

The same procedure is applied to direction b, which yields the evolution equation

˙̄QA
b,k +

1

τb,k
Q̄

A

b,k =
d

dt

[

Ŝ
v,0

B,k

]

, (97)

with

Ŝ
v,0

B,k := DEV
[

S̄
v,0
B,k

]

= S̄
v,0
B,k :

[

I −
1

3
C ⊗ C−1

]

. (98)
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Finally, the update equation is defined by

Q̄
A,n+1
b,k = H̄

n

B,k + exp

{

−
∆t

2τb,k

}

Ŝ
v,0,n+1

B,k

with H̄
n+1
B,k = exp

{

−
∆t

τb,k

}

Q̄
A,n+1
b,k − exp

{

−
∆t

2τb,k

}

Ŝ
v,0,n+1

B,k . (99)

In the equations above Ŝ
v,0

A,j and Ŝ
v,0

B,k are the instantaneous deviatoric viscous overstresses
for the directions a and b. Instantaneous means that the strain-like internal variables are
held constant when performing the derivative. The quantities H̄

n+1
I,i , H̄

n+1
A,j and H̄

n+1
B,k are

the history variables, which need to be stored in every time step. With all the terms at
hand, the isochoric chain rule stresses at time tn+1 may be computed according to

S̄
n+1

= S̄
n+1
I + S̄

n+1
A , (100)

with

S̄
n+1
I =



1 +

nI
v∑

i=1

βi exp

{

−
∆t

2τi

}


 S̄
e,n+1
I +

nI
v∑

j=1

H̄
n

I,i (101)

and

S̄
n+1
A = S̄

e,n+1
A +

nA
v,j∑

j=1

Q̄
A

a,j +

nA
v,k∑

k=1

Q̄
A

b,k

= S̄
e,n+1
A +

nA
v,j∑

j=1

exp

{

−
∆t

2τa,j

}

S̄
v,0,n+1
A,j +

nA
v,j∑

j=1

H̄
n

A,j

+

nA
v,k∑

k=1

exp

{

−
∆t

2τb,k

}

S̄
v,0,n+1
B,k +

nA
v,k∑

k=1

H̄
n

B,k . (102)

Algorithmic Lagrangian Moduli

The Lagrangian isochoric chain rule moduli are derived according to

C̄iso = 2∂C̄S̄
iso
.

Here, they have the form

C̄n+1
iso =



1 +

nI
v∑

i=1

βi exp

{

−
∆t

2τi

}


 C̄
e,n+1
I + C̄

e,n+1
A

+

nA
v,j∑

j=1

exp

{

−
∆t

2τa,j

}

C̄
v,0,n+1
A,j +

nA
v,k∑

k=1

exp

{

−
∆t

2τb,k

}

C̄
v,0,n+1
B,k (103)
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4.4.1. Free Energy Function of the Orthotropic Linear Viscoelastic Model

Now, we define a specific free energy function enabling the describtion orthotropic finite
linear viscoelastic behaviour. According to (88), we need the following terms

Ψe
I = C10(Ī1 − 3) + C20(Ī1 − 3)2 + C30(Ī1 − 3)3

Ψe
A = αe1(J̄4 − 1)2 + αe2

[
(J̄5 − 1) − (Ī1 − 3)(J̄4 − 1) + (Ī2 − 3) − 2(J̄4 − 1)

]

+ αe3(J̄6 − 1)2 + αe4

[
(J̄7 − 1) − (Ī1 − 3)(J̄6 − 1) + (Ī2 − 3) − 2(J̄6 − 1)

]

Ψv
I,i = βiΨ

e
I

Ψv
A,i = αv1,i(J̄4 − 1)2 + αv2,i

[
(J̄5 − 1) − (Ī1 − 3)(J̄4 − 1) + (Ī2 − 3) − 2(J̄4 − 1)

]

+ αv3,i(J̄6 − 1)2 + αv4,i

[
(J̄7 − 1) − (Ī1 − 3)(J̄6 − 1) + (Ī2 − 3) − 2(J̄6 − 1)

]
.

(104)

The invariants are defined in (70) and (71). Again, we assume the coupling Ψv
I,i = βiΨ

e
I

between the isotropic viscous part of the free energy with the isotropic elastic part for
every Maxwell-Branch. Ψe

A and Ψv
A,i include the free energy terms correlated with the

preferred directions a and b. The model is implemented making use of four Maxwell-
Branches for the overall viscous contribution. The material parameters are summarized
in the table below.

Isotropic Anisotropic Total

Elasticity Parameters κ,C10,C20,C30 αe1, αe2, αe3, αe4 8
Viscosity Parameters βi,τi αv1,i,αv2,i,τa,i

(i=1,2,3,4) αv3,i,αv4,i,τb,i 32

Table 1: Material parameters of orthotropic linear viscoelasticity model

According to the equations (101) and (102), we need a formulation for S̄
e

I , which is already
given in equation (28)

S̄
iso

= 2
[
C10 + 2C20(Ī1 − 3) + 3C30(Ī1 − 3)2

]
1 .

The anisotropic elastic contribution S̄
e

A is defined in (81)

S̄
iso

= f1 1 + f2 C̄ + f3 M + f4 (MC̄ + C̄M) + f5 N + f6 (NC̄ + C̄N) ,

with

f1 = 2C10 + 4C20(Ī3 − 3) + 6C30(Ī3 − 3)2

+2(αe2 + αe4)Ī1 − 2(αe2(J̄4 − 1) + αe4(J̄6 − 1))

f2 = −2(αe2 + αe4)

f3 = 4αe1(J̄4 − 1) − 2αe2(Ī1 − 3) − 4αe2

f4 = 2αe2 = const.

f5 = 4αe3(J̄6 − 1) − 2αe4(Ī1 − 3) − 4αe4

f6 = 2αe4 = const. ,
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the equation for the viscous stresses S̄
v,0
A,j in a-direction is given by

S̄
v,0
A,j =

[
2αv2,j Ī1 − 2αv2,j(J̄4 − 1)

]
1

− 2αv2,j C̄

+
[
4αv1,j(J̄4 − 1) − 2αv2,j(Ī1 − 3) − 4αv2,j

]
M

+ 2αv2,j (MC̄ + C̄M) (105)

and the equation for the viscous stresses S̄
v,0
B,k in b-direction read

S̄
v,0
B,k =

[
2αv4,kĪ1 − 2αv4,k(J̄6 − 1)

]
1

− 2αv4,k C̄

+
[
4αv3,k(J̄6 − 1) − 2αv4,j(Ī1 − 3) − 4αv4,k

]
N

+ 2αv4,k (NC̄ + C̄N) . (106)

The equations for the isotropic elastic chain rule moduli C̄e
I are obtained as

C̄e
I =

[
8C20 + 24C30(Ī3 − 3)

]
1 ⊗ 1 , (107)

whereas the anisotropic elastic contribution C̄e
A is given by

C̄e
A = 4(αe2 + αe4)1 ⊗ 1

− 4αe2 (M ⊗ 1 + 1 ⊗ M)

+ 8αe1 M ⊗ M

+ 4αe2 (M ⊗̃1 + 1⊗̃M)

− 4(αe2 + αe4) I

− 4αe4 (N ⊗ 1 + 1 ⊗ N)

+ 8αe3 N ⊗ N

+ 4αe4 (N⊗̃1 + 1⊗̃N) . (108)

For the viscous Lagrangian moduli for direction a we get

C̄
v,0
A,j = 4αv2,j 1 ⊗ 1

− 4αv2,j (M ⊗ 1 + 1 ⊗ M)

+ 8αv1,j M ⊗ M

+ 4αv2,j (M⊗̃1 + 1⊗̃M )

− 4αv2,j I (109)

and for the counterpart, i.e. for direction b, we end up with

C̄
v,0
B,k = 4αv4,k 1 ⊗ 1

− 4αv4,k (N ⊗ 1 + 1 ⊗ N)

+ 8αv3,k N ⊗ N

+ 4αv4,k (N⊗̃1 + 1⊗̃N)

− 4αv4,k I . (110)
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With the insertion of these relations into equation (89) and (103), the constitutive equa-
tions for the numerical implementation are complete.

5. Numerical Examples

The material model was implemented into the finite element code LS-DYNA. Thereby,
an explicit and an implicit implementation has been carried out. To show the perfor-
mance of the model and display anisotropy effects, we use the tranversely isotropic model
setting αe3 = αe4 = 0. Also, the relaxation times are set equal for the isotropic and
anisotropic viscous part. First of all, in the framework of the explicit implementation
we examine a tensile test of a fiber-reinforced bar and the inflation of a fiber-reinforced
circular membrane. The last example compares the explicit implementation to the im-
plicit implementation using a uniaxial single element tensile test. Note that the material
paramaters are intentionally chosen in order to demonstrate the effects clearly.

5.1. Numerical Example: Tensile Test of a Fiber-Reinforced Bar

In the first example we demonstrate the effects of the structural tensor M = a ⊗ a for
transverse isotropy. To this end, we consider a rectangular bar composed of two layers of
fiber-reinforced incompressible rubber-like material with two different fiber-orientations
in both layers. It is clamped in the yz-plane at x = 0 mm. The dimensions of the bar
are 100 × 50 × 20 mm. For the upper layer we define an in-plane fiber orientation of
ϕu = -45◦, whereas the in-plane fiber orientation in the lower layer is ϕl = 45◦. The bar
is elongated in x-direction up to 250 mm. Thereby, the maximum stretch-rate is λ̇ = 751

s
.

This stretch-rate is chosen to examine the robustness of the model for applications with
high stretch rates, for example crash-simulations. The loadcurve ux applied to the nodes
in plane x = 100 mm is shown in Figure 2.
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Figure 2: Displacement curves of point A during the relaxation test
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The bar is discretisized with 800 constant stress solid elements (ETYP=1 in LS-DYNA)
using a default hourglass control (IHQ=6).The material parameters for the assumed quasi-
incompressible material are given in the table below.

Isotropic Anisotropic

Elastic κ C10 C20 C30 αe1 αe2

[kN/mm2] 10.00 2.947·10−4 -3.01·10−5 5.605·10−6 0.001 0.002

Viscoelastic β1 τ1 β2 τ2 αv1,1 αv1,2 αv2,1 αv2,2

[kN/mm2] 0.200 100.000 0.30 10.00 0.011 0.021 0.012 0.022

Table 2: Material parameters for tensile test of fiber-reinforced bar

The parameters were set such that the anisotropy effects are pointed out clearly. The
deformed shape of the bar depends strongly on the orientation of the structural tensor
M . As the bar is elongated in a deformation controlled process, torsion of the bar will
occur due to the embedded fibers, which can be seen in Figure 3.

t = 0.00 ms t = 10.00 ms

t = 20.00 ms t = 75.00 ms

Figure 3: Deformation of a rectangular bar during relaxation test

This phenomenon is known from the deformation of fiber-reinforced composite laminates.
The rotation is such that the orientations of the fibers allign with the loading axis be-
cause the stiffness of the material rises to its peak in fiber direction. Since we consider
transversely isotropic linear viscoelasticity, the behaviour during the relaxation phase is
of great interest. In Figure 3 and in Figure 4, this behaviour is outlined impressively.
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t = 20.00 ms t = 75.00 ms

Point A

Figure 4: Visualization of relaxation process

Comparing the pictures in Figure 4 we observe that the bar rotates backwards between
the beginning of the relaxation phase at time t = 20.00ms and the end of the simulation
at time t = 75.00ms, until the viscous overstresses have decayed. This may also be seen in
the y-displacement curve for the node at Point A in Figure 2b. The maximum deflection
occurs at the beginning of the relaxation period and it decreases as time advances. Since
the fibers are located in the xy-plane, there is no relaxation in z-direction.

5.2. Numerical Example: Inflation of a Fibre-reinforced Circular Membrane

In the second example we simulate the inflation of a fiber-reinforced circular membrane
with an in-plane fiber direction of ϕ = 45◦. The membrane consists of one layer of fiber-
reinforced rubber and its radius is 400mm, whereas the thickness is 20mm. The pressure
rises linearly up to a maximum pressure of p = 0.012 kN/mm2 after t = 50ms. The
translational degrees of freedom of the nodes on the circumference of the lower surface
of the membrane are fixed in all directions and the mebrane is discretisized with a layer
of constant stress solid elements (ETYP=1 in LS-DYNA) and a layer of Belytschko-Tsay
(ETYP=2 in LS-DYNA) shell elements with the thickness of 2mm, which are necessary
for the application of the pressure. We use the same hourglass control as in Section 5.1.
The constitutive model is the same as for the bar considered in Section 5.1, but this time
we investigate two settings. The first one is an isotropic elastic setting and the other one
is an anisotropic elastic setting. The material parameters are listed in the table below.
Note that for the isotropic elastic case αe1 and αe2 are set to zero.

Isotropic Anisotropic

Elastic κ C10 C20 C30 αe1 αe2

[kN/mm2] 10.00 2.257·10−3 -3.33·10−5 3.518·10−9 0.01 0.02

Table 3: Material parameters for inflation of fiber-reinforced circular membrane

In Figure 5 different stages of the deformation are depicted for the isotropic elastic and
transversely isotropic case.
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(a) (b)

(c) (d)

Figure 5: Isotropic elasticity (a) top view (b) side view ; Transversely isotropic elasticity
(c) top view (d) side view

Observe that for the isotropic elastic deformation the deformed membrane takes a sphere-
like shape, whereas for the anisotropic elastic case it displays an ellipsoidal shape with
two of the principal axes alligned in fiber direction and transverse to it. Since the stiff
fibers have an orientation of ϕ = 45◦ in the xy-plane, the extension coaxial to the fiber
direction is less than in perpendicular directions.

5.3. Numerical Example: Single Element Tensile Test

The material model is implemented into LS-DYNA in the sense of an explicit and an
implicit implementation. In order to discuss the transversely isotropic linear visoelastic
material behaviour and also for the comparison of the explicit and implicit formulation,
we consider a single element relaxation test in this example (see Figure 6).

t = 0.00 ms t = 250.00 ms t = 500.00 ms t = 1000.00 ms

Point B

Figure 6: Single element relaxation test
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The fully integrated solid element with edge lenghts 10mm is deformed in x-direction
in a displacement controlled deformation process according to the loadcurve depicted in
Figure 7a. The in-plane fiber orientation is ϕ = 45◦ and the maximum elongation of the
element is 5mm at time t = 500ms.
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Figure 7: Displacement curves of point B during the relaxation test

As expected, the displacement curves for the explicit and imlicit implementation shown in
Figure 7 coincide for the x-, y- and z-displacement. Again, the curve for the y-displacement
depicted in Figure 7b shows the relaxation of the material clearly, while there is no
relaxation in z-direction. The material parameters used for the simulation of the single
element relaxation test are listed in the table below.

Isotropic Anisotropic

Elastic κ C10 C20 C30 αe1 αe2

[kN/mm2] 10.00 2.947·10−4 -3.01·10−5 5.605·10−6 0.01 0.02

Viscoelastic β1 τ1 β2 τ2 αv1,1 αv1,2 αv2,1 αv2,2

[kN/mm2] 0.50 100.000 0.70 10.00 1.11 1.12 1.11 1.12

Table 4: Material parameters for single element tensile test

The stress state inside the element can be seen in Figure 8a. Since the displacement ux is
prescribed, stresses only evolve in x-direction. All other components of the Cauchy stresses
are zero due to the equilibrium conditions. Comparing the stress response evaluated in
an explicit and an implicit simulation we again find no difference in the curves displayed
in Figure 8b, which we expect for a single element test.
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Figure 8: Cauchy stresses (a) Stress state in implicit simulation (b) Comparison with
explicit simulation

6. Conclusion

In this article we proposed a polyconvex free energy function capable of describing or-
thotropic and transversely isotropic linear viscoelastic material behaviour at finite defor-
mations. The model has been implemented into LS-DYNA enabling explicit and implicit
finite element simulations of representative boundary value problems. Through the simu-
lations, we outlined that the model mirrors the expected results in a qualitative manner.
The model is also very versatile because with a specific choice of the material parameters
it is possible to describe isotropic elastic or linear viscoelastic material behaviour as well
as an anisotropic elastic or linear viscoelsatic material response.

In a further step, the performance of the model will be evaluated in comparison to ex-
perimental data, which is necessary for making quantitative judgments about the model’s
capabilites.
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