
October 4, 2004 Computation Products Group 1

AMD AMD OpteronOpteronTMTM & PGI:& PGI:
“Enabling the Worlds Fastest“Enabling the Worlds Fastest

LSLS--DYNA Performance”DYNA Performance”

Tim Wilkens Ph.D.Tim Wilkens Ph.D.
Member of Technical StaffMember of Technical Staff

tim.wilkens@amd.comtim.wilkens@amd.com

October 4, 2004 Computation Products Group 2

AgendaAgenda

Architecture Architecture –– Opteron, Itanium, Opteron, Itanium, XeonEMTXeonEMT

PGI Compiler PGI Compiler –– DYNA driven enhancementsDYNA driven enhancements

Performance Performance –– Neon and 3Neon and 3--Car ModelCar Model

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 1

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 3

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

Architecture AgendaArchitecture Agenda
Opteron = Execution + Memory Access + IOOpteron = Execution + Memory Access + IO

L2L2
CacheCache

L1L1
DataData

CacheCache
64KB64KB

L1L1
InstructionInstruction

CacheCache
64KB64KB

4444
entryentry
LoadLoad
StoreStore
QueueQueue

SystemSystem
RequestRequest
QueueQueue

CPU 0CPU 0CPU 1CPU 1

DDR MemoryDDR Memory

IO HT LinkIO HT Link

CrossbarCrossbar

CPUCPU--CPU HT LinkCPU HT Link

CPUCPU--CPU HT LinkCPU HT Link

Customer Centric 64Customer Centric 64--bit Computingbit Computing

Instruction Decoding
Processors with Artificial Intelligence

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

October 4, 2004 Computation Products Group 4

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

Architecture AgendaArchitecture Agenda
Opteron = Execution + Memory Access + IOOpteron = Execution + Memory Access + IO

L2L2
CacheCache

L1L1
DataData

CacheCache
64KB64KB

L1L1
InstructionInstruction

CacheCache
64KB64KB

4444
entryentry
LoadLoad
StoreStore
QueueQueue

SystemSystem
RequestRequest
QueueQueue

CPU 0CPU 0CPU 1CPU 1

DDR MemoryDDR Memory

IO HT LinkIO HT Link

CrossbarCrossbar

CPUCPU--CPU HT LinkCPU HT Link

CPUCPU--CPU HT LinkCPU HT Link

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

Not all X86 Processors are created =Not all X86 Processors are created =

RISC Cores – scrupulous instruction preference

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

2

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 5

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

Architecture AgendaArchitecture Agenda
Opteron = Execution + Memory Access + IOOpteron = Execution + Memory Access + IO

L2L2
CacheCache

L1L1
DataData

CacheCache
64KB64KB

L1L1
InstructionInstruction

CacheCache
64KB64KB

4444
entryentry
LoadLoad
StoreStore
QueueQueue

SystemSystem
RequestRequest
QueueQueue

CPU 0CPU 0CPU 1CPU 1

DDR MemoryDDR Memory

IO HT LinkIO HT Link

CrossbarCrossbar

CPUCPU--CPU HT LinkCPU HT Link

CPUCPU--CPU HT LinkCPU HT Link

SystemSystem
RequestRequest
QueueQueue

CPU 0CPU 0CPU 1CPU 1

DDR MemoryDDR Memory

IO HT LinkIO HT Link

CrossbarCrossbar

CPUCPU--CPU HT LinkCPU HT Link

CPUCPU--CPU HT LinkCPU HT Link

Scalable Memory Bandwidth and IOScalable Memory Bandwidth and IO

physical memory scales with CPU #
memory bandwidth scales with CPU #
increased single threaded memory bandwidth
memory latency does not scale with CPU #
dramatically lower memory latency

October 4, 2004 Computation Products Group 6

Customer Centric 64Customer Centric 64--bit Computingbit Computing
Opteron vs ItaniumOpteron vs Itanium

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 3

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 7

Customer Centric 64Customer Centric 64--bit Computingbit Computing
Opteron vs ItaniumOpteron vs Itanium

Instruction Control Unit (72 entries)Instruction Control Unit (72 entries)

FastpathFastpath µµ code Enginecode Engine

FetchFetch BranchBranch
PredictionPrediction

Scan/AlignScan/Align

IntInt Decode & RenameDecode & Rename FP Decode & RenameFP Decode & Rename

3636--entry schedulerentry schedulerResRes ResRes ResRes

Progressive 64Progressive 64--bit approach: bit approach: 3232--bit instruction + prefix bytebit instruction + prefix byte

leverages x86 compiler technology leverages x86 compiler technology –– reliable compilers, port easilyreliable compilers, port easily

code size increase is minimal (~5%) code size increase is minimal (~5%) –– large caches not requiredlarge caches not required

x86 CPUs = RISC cores + CISCx86 CPUs = RISC cores + CISC→→RISC instruction decodersRISC instruction decoders

provides x86 processors provides x86 processors high clock frequencyhigh clock frequency and and legacy compatibilitylegacy compatibility

processor not compiler manages RISC core processor not compiler manages RISC core -- recompile rarelyrecompile rarely

Itanium is a slave to the compiler Itanium is a slave to the compiler -- recompile oftenrecompile often

outout--ofof--order execution and register renamingorder execution and register renaming

Opteron manages itOpteron manages it’’s registers intelligently s registers intelligently –– less compiler reliantless compiler reliant

Itanium requires the compiler to think for it Itanium requires the compiler to think for it –– strong compiler reliancestrong compiler reliance

Both Both OpteronOpteron and and ItaniumItanium are RISC, but Opteron doesn’t requireare RISC, but Opteron doesn’t require
reinventing compilersreinventing compilers, , large caches large caches & & a mint to a mint to purchacepurchace

October 4, 2004 Computation Products Group 8

All X86 RISC Cores aren’t created = All X86 RISC Cores aren’t created =
Opteron vs Xeon EMTOpteron vs Xeon EMT

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

OpteronOpteron: : INT and FP Execution UnitsINT and FP Execution Units

FADDFADD FMULFMUL

Xeon EMTXeon EMT: : FP Execution UnitsFP Execution Units

8080--bitsbits

128128--bitsbits

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

4

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 9

All X86 RISC Cores aren’t created = All X86 RISC Cores aren’t created =
Opteron vs Xeon EMTOpteron vs Xeon EMT

FADDFADD FMULFMUL

MULTMULT

FSTFSTALUALU

AGUAGU

ALUALU

AGUAGU

ALUALU

AGUAGU

OpteronOpteron: : INT and FP Execution UnitsINT and FP Execution Units

FADDFADD FMULFMUL

Xeon EMTXeon EMT: : FP Execution UnitsFP Execution Units

8080--bitsbits

128128--bitsbits

of # of intint pipes and pipeline depth impact integer throughputpipes and pipeline depth impact integer throughput

Opteron has 3 integer pipes Opteron has 3 integer pipes –– +50% +50% reg,regreg,reg move move thoughputthoughput

Opteron has 3 Opteron has 3 ALUALU//AGUAGU units units –– +50% +,+50% +,--,logical, shift throughput,logical, shift throughput

pipeline stages differs # pipeline stages differs –– shorter instruction execution latencyshorter instruction execution latency

Different Register File Sizes (Opteron 80Different Register File Sizes (Opteron 80--bit, Xeon 128bit, Xeon 128--bit)bit)

size dictates # size dictates # RISCRISC ops in an x86 instruction ops in an x86 instruction –– instructioninstruction preferencepreference

dictates # bits written from dictates # bits written from FPUFPU pipes pipes –– limits scalar SIMD throughputlimits scalar SIMD throughput

Design of FPU and issue bandwidth from FP schedulerDesign of FPU and issue bandwidth from FP scheduler

Opteron: ADD/MUL/ST pipes eat and write 240 bits per clockOpteron: ADD/MUL/ST pipes eat and write 240 bits per clock

Xeon: ADD/MUL pipes eat and write 128 bits per clockXeon: ADD/MUL pipes eat and write 128 bits per clock

Though Xeon64 and Opteron are instruction compatible, Xeon64Though Xeon64 and Opteron are instruction compatible, Xeon64
delivers ½ the throughput per clock on SIMD scalar codedelivers ½ the throughput per clock on SIMD scalar code

October 4, 2004 Computation Products Group 10

AMD OpteronAMD OpteronTMTM,Pentium,Pentium®®4 4 (FPU analysis)(FPU analysis)

Throughput of SSE, SSE2, x87 OperationsThroughput of SSE, SSE2, x87 Operations

2 / cycle2 / cycle2 / cycle2 / cycle2 / cycle2 / cycle4 / cycle4 / cycle2 / cycle2 / cycleAdd & Add &
MultiplyMultiply

1 / cycle1 / cycle1 / cycle1 / cycle1 / cycle1 / cycle2 / cycle2 / cycle1 / cycle1 / cycleMultiplyMultiply

1 / cycle1 / cycle1 / cycle1 / cycle1 / cycle1 / cycle2 / cycle2 / cycle1 / cycle1 / cycleAddAdd

X87X87SSE2SSE2 vectorvectorSSE2SSE2 scalarscalarSSESSE vectorvectorSSESSE ScalarScalarOperationOperation

1 / cycle1 / cycle2 / cycle2 / cycle1 / cycle1 / cycle4 / cycle4 / cycle1 / cycle1 / cycleAdd & Add &
MultiplyMultiply

1 / 1 /
2 cycles2 cycles

1 / cycle1 / cycle1 / 2 cycles1 / 2 cycles2 / cycle2 / cycle1 / 2 cycles1 / 2 cyclesMultiplyMultiply

1 / cycle1 / cycle1 / cycle1 / cycle1 / 2 cycles1 / 2 cycles2 / cycle2 / cycle1 / 2 cycles1 / 2 cyclesAddAdd

X87X87SSE2SSE2 vectorvectorSSE2SSE2 scalarscalarSSESSE vectorvectorSSESSE ScalarScalarOperationOperation

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 5

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 11

AMD OpteronAMD OpteronTMTM,Pentium,Pentium®®44 (ALU Analysis)(ALU Analysis)

Throughput and Latency ComparisonThroughput and Latency Comparison

3 / cycle3 / cycle3 / cycle3 / cycleLEA

39 cycle latency39 cycle latencyDIV unsignedunsigned

42 cycle latency42 cycle latencyDIV signedsigned

3 / cycle3 / cycle3 / cycle3 / cycleShift/Rotate

3 / cycle3 / cycle3 / cycle3 / cycleXOR/AND/OR

3 / cycle3 / cycle3 / cycle3 / cycleMOVreg,regreg,reg

2 / cycle2 / cycle2 / cycle2 / cycleMOVmem,regmem,reg

1 / 2 cycles1 / 2 cycles1 / cycle1 / cycle
4 cycle latency4 cycle latency

MUL unsignedsigned

1 / 2 cycles1 / 2 cycles1 / cycle1 / cycle
4 cycle latency4 cycle latency

MULsignedsigned

3 / cycle3 / cycle3 / cycle3 / cycleADD/SUB

6464--bitbit3232--bitbitOperationOperation

NANA(2(2––0.5) / cycle0.5) / cycleLEA

NANA80 cycle latency80 cycle latencyDIV unsignedunsigned

NANA80 cycle latency80 cycle latencyDIV signedsigned

NANA2 / cycle2 / cycleShift/Rotate

NANA2 / cycle2 / cycleXOR/AND/OR

NANA2 / cycle2 / cycleMOVreg,regreg,reg

NANA2 / cycle2 / cycleMOVmem,regmem,reg

NANA1 / cycle1 / cycle
10 cycle latency10 cycle latency

MUL unsignedsigned

NANA1 / cycle1 / cycle
18 cycle latency18 cycle latency

MULsignedsigned

NANA2 / cycle2 / cycleADD/SUB

6464--bitbit3232--bitbitOperationOperation

October 4, 2004 Computation Products Group 12

Scalable Memory Bandwidth and IOScalable Memory Bandwidth and IO
Opteron’sOpteron’s on die IO controlleron die IO controller

SystemSystem
RequestRequest
QueueQueue

CPU 0CPU 0CPU 1CPU 1

DDR MemoryDDR Memory

IO HT LinkIO HT Link

CrossbarCrossbar

CPUCPU--CPU HT LinkCPU HT Link

CPUCPU--CPU HT LinkCPU HT Link6.46.4 GB/sGB/s

6.46.4 GB/sGB/s

6.4 6.4 –– 8.08.0
GB/sGB/s

6.4 6.4 –– 8.08.0
GB/sGB/s

25.6 25.6 –– 28.828.8
GB/sGB/s

1.6 1.6 –– 2.0 2.0 GT/sGT/s
coherentcoherent

1.6 1.6 GT/sGT/s
nonnon--coherentcoherent

Dual channelsDual channels
to DDR Memoryto DDR Memory

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

6

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 13

Scalable Memory Bandwidth and IOScalable Memory Bandwidth and IO
Opteron’sOpteron’s on die IO controlleron die IO controller

October 4, 2004 Computation Products Group 14

Scalable Memory Bandwidth and IOScalable Memory Bandwidth and IO
Opteron’sOpteron’s on die IO controlleron die IO controller

HypertransportHypertransport

asynchronous coherent communication asynchronous coherent communication –– maintain maintain MPMP cache coherencycache coherency

high rate of communication high rate of communication –– low impact on low impact on MPMP memory latencymemory latency

Memory BandwidthMemory Bandwidth

scales linearly with # of processors in systemscales linearly with # of processors in system

greater % of theoretical peak delivered greater % of theoretical peak delivered –– low latency memory accesslow latency memory access

Memory LatencyMemory Latency

memory requests retired rapidly memory requests retired rapidly –– enhances memory bandwidthenhances memory bandwidth

doesndoesn’’t scale linearly with # CPUS t scale linearly with # CPUS –– scalable SMP performancescalable SMP performance

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 7

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 15

PGI 5.2 AgendaPGI 5.2 Agenda
Compiler Enhancements driven by DYNACompiler Enhancements driven by DYNA

Overview of enhancements in PGI 5.2Overview of enhancements in PGI 5.2
all vector code isn’t created equalall vector code isn’t created equal

addressing of common block variablesaddressing of common block variables

loop peeling & optimal vector codeloop peeling & optimal vector code

packing scalars into vector formatpacking scalars into vector format

shuffling data in loops with shuffling data in loops with GPRsGPRs

excessive excessive prefetchingprefetching –– caveats to using caveats to using swsw prefetchprefetch

tuning of the unrolling heuristic tuning of the unrolling heuristic –– less register pressureless register pressure

expanded class of expanded class of vectorizablevectorizable loopsloops

F90F90 pointer addressing support for objects greater than pointer addressing support for objects greater than
2 GB2 GB

October 4, 2004 Computation Products Group 16

All All VectorizedVectorized Code isn’t created =Code isn’t created =
Minimizing bubbles in the FPU pipeline Minimizing bubbles in the FPU pipeline

consider the following loop:consider the following loop:
DO i=1,NDO i=1,N

a(ia(i) =) = a(ia(i) +) + b(ib(i)*[)*[c(i)+d(ic(i)+d(i)])]
ENDDOENDDO

movlps (d),%xmm0
movhps 8(d),%xmm0
movlps (c),%xmm1
movhps 8(c),%xmm1
addps %xmm0,%xmm1
movlps (b),%xmm2
movhps 8(b),%xmm2
mulps %xmm2,%xmm1
movlps (a),%xmm3
movhps 8(a),%xmm3
addps %xmm3,%xmm1

movlps (d),%xmm0
movhps 8(d),%xmm0
movlps (c),%xmm1
movhps 8(c),%xmm1
addps %xmm0,%xmm1
movlps (b),%xmm0
movhps 8(b),%xmm0
mulps %xmm0,%xmm1
movlps (a),%xmm0
movhps 8(a),%xmm0
addps %xmm0,%xmm1

movaps (d),%xmm0
addps (c),%xmm0
mulps (b),%xmm1
addps (a),%xmm1

uses 4 registersuses 4 registers
generates 8 bubblesgenerates 8 bubbles

uses 2 registersuses 2 registers
generates 8 bubblesgenerates 8 bubbles

PGI 5
.1.3

PGI 5
.1.3

PGI 5.2.*

PGI 5.2.*

use
register

renaming

operate
from

memory

on
16-byte
aligned

addresses

uses 1 registeruses 1 register
generates 2 bubblesgenerates 2 bubbles

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

8

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 17

Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

Addressing of Common BlocksAddressing of Common Blocks
Minimize GPR stores and loads from stack Minimize GPR stores and loads from stack

consider the common blocks and loop below:consider the common blocks and loop below:
Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

October 4, 2004 Computation Products Group 18

Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

Addressing of Common BlocksAddressing of Common Blocks
Minimize GPR stores and loads from stack Minimize GPR stores and loads from stack

consider the common blocks and loop below:consider the common blocks and loop below:
Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

PGI 5.1.5 uses PGI 5.1.5 uses sepatatesepatate GPRsGPRs to to
address each array, even for address each array, even for →→’’s in s in
the same common blockthe same common block

Accentuates register pressure in Accentuates register pressure in
loops. One LSloops. One LS--DYNA loop had 54 GPR DYNA loop had 54 GPR
movmov’’ss to and from stack in PGI 5.1.5, to and from stack in PGI 5.1.5,
Intel 7.1 had 0 Intel 7.1 had 0 occuracncesoccuracnces of GPR of GPR
movsmovs

movqmovq --120(%rsp), %r15120(%rsp), %r15
movlps (%r15,%rcx), %xmm4
movhps 8(%r15,%rcx), %xmm4
movqmovq --112(%rsp), %r15112(%rsp), %r15
movlps (%r15,%rcx), %xmm5
movhps 8(%r15,%rcx), %xmm5
subps %xmm4, %xmm5
movqmovq --104(%rsp), %r15104(%rsp), %r15
movlps (%r15,%rcx), %xmm4
movhps 8(%r15,%rcx), %xmm4
subps %xmm4, %xmm5
movqmovq --96(%rsp), %r1596(%rsp), %r15

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 9

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 19

Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

Addressing of Common BlocksAddressing of Common Blocks
Minimize GPR stores and loads from stack Minimize GPR stores and loads from stack

consider the common blocks and loop below:consider the common blocks and loop below:
Common/test1/x1(N),x2(N),x3(N),y1(N),y2(N),y3(N)
Common/test2/px1(N),py1(N),px2(N),py2(N)
Common/test3/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test3/g1(N),g2(N),g3(N),g4(N)
Common/test4/ax(N),ay(N),bz(N)

do i=1,N
xi =area(i)*(x3(i)-x2(i)-x4(i))
yi =area(i)*(y3(i)-y2(i)-y4(i))
g1(i)= 1.-px1(i)*xi-py1(i)*htyi
g2(i)=-1.-px2(i)*xi-py2(i)*htyi
g3(i)= 2.-g1(i)
g4(i)=-2.-g2(i)
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

PGI 5.2.* accesses all entities in PGI 5.2.* accesses all entities in
the same common block with 1 GPRthe same common block with 1 GPR

GPR register pressure in PGI 5.2.* GPR register pressure in PGI 5.2.*
is greatly reduced. No excess is greatly reduced. No excess ropsrops, ,
in comparison to Intel, are generatedin comparison to Intel, are generated

Executable Operations from Executable Operations from
memory are now performed memory are now performed –– less less
bubbles in FPU pipelinebubbles in FPU pipeline

movaps -12000(%r9,%rdx),%xmm4
movaps -8000(%r9,%rdx),%xmm9
movaps (%r8,%rdx),%xmm5
movaps 4000(%r8,%rdx),%xmm6
movaps %xmm3,%xmm7
subl $8,%eax
subps -24000(%r9,%rdx),%xmm4
addl $8,%ecx
subps -20000(%r9,%rdx),%xmm9
movaps %xmm7,%xmm8
subps (%r9,%rdx),%xmm4
mulps %xmm5,%xmm4

October 4, 2004 Computation Products Group 20

Loop Peeling & Optimal Vector CodeLoop Peeling & Optimal Vector Code
Common Block IllustrationCommon Block Illustration

Efficient code vectorization requires:Efficient code vectorization requires:
uniform relative alignment of pointers in loopsuniform relative alignment of pointers in loops

Can be achieved via use of common blocksCan be achieved via use of common blocks
Span of arrays covered in each loop iteration should be a multiSpan of arrays covered in each loop iteration should be a multiple of 4 or 2 in single or ple of 4 or 2 in single or
double precisiondouble precision

loop peeling to adjust common pointers to 16loop peeling to adjust common pointers to 16--byte aligned locationsbyte aligned locations

performing *,+,performing *,+,-- from memory (requires 16from memory (requires 16--byte alignment)byte alignment)

PGI 5.2.* implements peeling of code in PGI 5.2.* implements peeling of code in CBCB loopsloops

Common/test1/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test2/g1(N),g2(N),g3(N),g4(N)
Common/test3/ax(N),ay(N),bz(N)

do i=1,N
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

10

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 21

Loop Peeling & Optimal Vector CodeLoop Peeling & Optimal Vector Code
Common Block IllustrationCommon Block Illustration

Efficient code vectorization requires:Efficient code vectorization requires:
uniform relative alignment of pointers in loopsuniform relative alignment of pointers in loops

Can be achieved via use of common blocksCan be achieved via use of common blocks
Span of arrays covered in each loop iteration should be a multiSpan of arrays covered in each loop iteration should be a multiple of 4 or 2 in single or ple of 4 or 2 in single or
double precisiondouble precision

loop peeling to adjust common pointers to 16loop peeling to adjust common pointers to 16--byte aligned locationsbyte aligned locations

performing *,+,performing *,+,-- from memory (requires 16from memory (requires 16--byte alignment)byte alignment)

PGI 5.2.* implements peeling of code in PGI 5.2.* implements peeling of code in CBCB loopsloops

Common/test1/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)
Common/test2/g1(N),g2(N),g3(N),g4(N)
Common/test3/ax(N),ay(N),bz(N)

do i=1,N
ax(i)=g2(i)*vx2(i)+g3(i)*vx3(i)+g4(i)*vx4(i)
ay(i)=g2(i)*vy2(i)+g3(i)*vy3(i)+g4(i)*vy4(i)
bz(i)=g2(i)*vz2(i)+g3(i)*vz3(i)+g4(i)*vz4(i)

enddo

Common/test1/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),v/test1/vx2(N),vx3(N),vx4(N),vy2(N),vy3(N),vy4(N),vz2(N),vz3(N),vz4(N)z4(N)
…
• Check relative alignment of test1,test2 and test3 common block pointers

• If pointers are aligned to 16-byte boundaries – JUMP TO VECTORSSE LOOPJUMP TO VECTORSSE LOOP

• Scalar SSE loop +6*9Scalar SSE loop +6*9 – used to align CBCB pointers on a 16-byte boundary

• Vector SSE loop +6*9Vector SSE loop +6*9 – used to perform most of computation

• Scalar SSE loop +6*9Scalar SSE loop +6*9 – final iterations not covered by vector SSE loop

October 4, 2004 Computation Products Group 22

Optimized Optimized ScalarScalar→→VectorVector TransformsTransforms
Packing 4 scalars in a vector loop Packing 4 scalars in a vector loop

Some vector loops require performing vector operations of scalarSome vector loops require performing vector operations of scalar
data upon vector quantitiesdata upon vector quantities::

a(ia(i) =) = a(ia(i) +) + b(j,ib(j,i))**c(ic(i) +) + d(j,id(j,i))**e(ie(i))

PGI 5.1.5 does this via reading 4 floats, storing them to stack PGI 5.1.5 does this via reading 4 floats, storing them to stack and then and then
reading them in a 128reading them in a 128--bit loadbit load::

Create load / store dependenciesCreate load / store dependencies
Excessive # of Excessive # of ropsrops required to perform this functionrequired to perform this function
Requires 8 x 32Requires 8 x 32--bit bit movssmovss loads / stores, 1 loads / stores, 1 movapsmovaps read (14 read (14 ropsrops))
Creates 8 bubbles down FPU pipesCreates 8 bubbles down FPU pipes

PGI 5.2.* does this via interleaving floatsPGI 5.2.* does this via interleaving floats

4 x 4 x movssmovss reads, 2 x reads, 2 x UnpcklpsUnpcklps, 1 x , 1 x movlhpsmovlhps (11 (11 ropsrops))
Creates 4 bubbles down FPU pipesCreates 4 bubbles down FPU pipes
Much shorter latencyMuch shorter latency

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 11

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 23

Use Use GPRsGPRs to shuffle datato shuffle data
Not an absolute statement but almost Not an absolute statement but almost

GPRsGPRs have the following advantages in loops that “only” shuffle datahave the following advantages in loops that “only” shuffle data
aroundaround::

movssmovss decodes to 2 decodes to 2 ropsrops, a GPR , a GPR movmov decodes to 1 decodes to 1 roprop

the FPU pipe can only perform 1 32the FPU pipe can only perform 1 32--bit or 64bit or 64--bit store per cycle while the bit store per cycle while the
ALU unit can perform 2 of eitherALU unit can perform 2 of either

pseudo vector copies of floats can be performed using 64pseudo vector copies of floats can be performed using 64--bit bit GPRsGPRs to to
perform 2 at a time, this utilizes the full throughput of the ALperform 2 at a time, this utilizes the full throughput of the ALU and load U and load
store unitstore unit

double precision moves should still be more efficient because thdouble precision moves should still be more efficient because the ALU e ALU
unit can perform 2 x 64unit can perform 2 x 64--bit stores per cycle whereas the FPU can only bit stores per cycle whereas the FPU can only
perform 1 x 64perform 1 x 64--bit store per cyclebit store per cycle

caution must be taken into consideration to not generate excessicaution must be taken into consideration to not generate excessive ve
register pressureregister pressure

ALU throughput can be affected if there are many ALU ops in addiALU throughput can be affected if there are many ALU ops in addition to tion to
loads and stores occurring (add, sub, lea, etc.)loads and stores occurring (add, sub, lea, etc.)

October 4, 2004 Computation Products Group 24

Excessive Excessive PrefetchingPrefetching
Caveats about software Caveats about software prefetchprefetch

PrefetchingPrefetching can preemptively bring data into the cache in advance of can preemptively bring data into the cache in advance of
it’s use, butit’s use, but::

Opteron has a very robust HW Opteron has a very robust HW prefetcherprefetcher for sequential data accessesfor sequential data accesses

HW HW prefetchesprefetches move into L2 (12 vs 3 cycle latency compared to L1move into L2 (12 vs 3 cycle latency compared to L1
does not consume execution dispatch bandwidth / does not consume execution dispatch bandwidth / swsw prefetchesprefetches dodo

SW SW prefetchesprefetches across 4KB page boundaries are dropped and suffer a 90 across 4KB page boundaries are dropped and suffer a 90
cycle latency penaltycycle latency penalty

SW SW prefetchprefetch ofof nonnon--sequential data accesses offers little benefit sequential data accesses offers little benefit

only 4only 4--8 bytes of every 64 bytes fetched is useful8 bytes of every 64 bytes fetched is useful
Rate of cache evictions is very high, useful data now has to be Rate of cache evictions is very high, useful data now has to be fetched from L2fetched from L2
MAB units in processor consumed quickly and prevents loads from MAB units in processor consumed quickly and prevents loads from occurringoccurring

SW SW prefetchesprefetches consume 1 of the 3 execution dispatch slots per clock cycle, thconsume 1 of the 3 execution dispatch slots per clock cycle, thus us
limiting throughput through the FPU and IPClimiting throughput through the FPU and IPC

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

12

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 25

Tuning of Unrolling HeuristicTuning of Unrolling Heuristic
Less is sometimes more Less is sometimes more

Excessive unrolling of some classes of loops increases register Excessive unrolling of some classes of loops increases register

pressurepressure::
Loops that do not benefit from compiler unrollingLoops that do not benefit from compiler unrolling::

multimulti--dimensional arrays in which (dimensional arrays in which (ii, j,, j,……)) ii isnisn’’t the fastest moving indext the fastest moving index
arrays whose index needs to be loaded to be determined, arrays whose index needs to be loaded to be determined, x(x(BIN(iBIN(i))))
loops large in size that exceed the # of floatingloops large in size that exceed the # of floating--point registerspoint registers

GPR and FP registers are spilled to memory causing:GPR and FP registers are spilled to memory causing:
excess RISC operation counts compared excess RISC operation counts compared –– more work required more execution timemore work required more execution time
address generation held up by register load dependenciesaddress generation held up by register load dependencies
out of order execution is limited via not being able to load daout of order execution is limited via not being able to load data to processta to process

PGI 5.2PGI 5.2 unrolls less aggressively, allowing out of order execution unrolls less aggressively, allowing out of order execution
within the processor to mask latency rather than compiler unrollwithin the processor to mask latency rather than compiler unrollinging

October 4, 2004 Computation Products Group 26

Expanded Class of Vector loopsExpanded Class of Vector loops
Vector Code generation enhancements Vector Code generation enhancements

Loops with the following constructs now Loops with the following constructs now vectorizevectorize in in PGI 5.2PGI 5.2 ::

loops containing loops containing SIGNSIGN or or MERGEMERGE intrinsicsintrinsics

large loops containing more than a preset limit of instructionslarge loops containing more than a preset limit of instructions

LoopLoop--carry Reduction Elimination (carry Reduction Elimination (LRELRE) interfered with some loops) interfered with some loops
vectorizationvectorization

invariant IF / ELSE transformations that hoist IF / ELSE constrinvariant IF / ELSE transformations that hoist IF / ELSE constructs not ucts not
dependent upon loop variables outside of loop replicating loop wdependent upon loop variables outside of loop replicating loop with all ith all
cases of IF / ELSE statementcases of IF / ELSE statement

Loops that operate upon data objects > 2 GBLoops that operate upon data objects > 2 GB

Loops in programs compiled with the Loops in programs compiled with the ––i8 switch i8 switch

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 13

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 27

LSLS--DYNA PerformanceDYNA Performance

Neon and 3Neon and 3--Car ModelsCar Models

October 4, 2004 Computation Products Group 28

6464--bit LSbit LS--DYNA v5434DYNA v5434
Neon Model PerformanceNeon Model Performance

0

2000

4000

6000

8000

10000

12000

14000

16000

W
a
ll

 C
lo

ck
 T

im
e
 o

f
E
x
e
cu

ti
o

(l
o
w

e
r

is
 b

e
tt

e
r)

1P 2P 4P 8P 16P 32P

LS-DYNA Neon Benchmark Performance

IBM x335 3.066Ghz - Myrinet HP RX2600 Itanium 2 1.5 Ghz - Infiniband
2P Opteron 1.8Ghz - Infiniband 2P Opteron 2Ghz - Infiniband

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

14

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 29

6464--bit LSbit LS--DYNA v5434DYNA v5434
Neon Model PerformanceNeon Model Performance

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
 I

ta
n
iu

m

1P 2P 4P 8P 16P 32P

LS-DYNA Neon Benchmark Performance Relative to Itanium 2

IBM x335 3.066Ghz - Myrinet HP RX2600 Itanium 2 1.5 Ghz - Infiniband
2P Opteron 1.8Ghz - Infiniband 2P Opteron 2Ghz - Infiniband

October 4, 2004 Computation Products Group 30

6464--bit LSbit LS--DYNA v5434DYNA v5434
33--Car Model PerformanceCar Model Performance

0

10000

20000

30000

40000

50000

60000

W
a
ll

 C
lo

ck
 T

im
e
 o

f
E
x
e
cu

ti
o

(l
o
w

e
r

is
 b

e
tt

e
r)

8P 16P 32P 64P

LS-DYNA 3-Car Benchmark Performance

IBM x335 2.8Ghz - Gigabit HP RX2600 Itanium 2 1.5 Ghz - Infiniband 2P Opteron 2Ghz - Infiniband

3. LS-DYNA Anwenderforum, Bamberg 2004 CAE / IT II

 E - II - 15

© 2004 Copyright by DYNAmore GmbH

October 4, 2004 Computation Products Group 31

6464--bit LSbit LS--DYNA v5434DYNA v5434
33--Car Model PerformanceCar Model Performance

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
 I

ta
n
iu

m

8P 16P 32P 64P

LS-DYNA 3-car Benchmark Performance Relative to Itanium 2

IBM x335 2.8Ghz - Gigabit HP RX2600 Itanium 2 1.5 Ghz - Infiniband 2P Opteron 2Ghz - Infiniband

October 4, 2004 Computation Products Group 32

AMD, the AMD Arrow Logo, AMD Opteron and combinations thereof
are trademarks of Advanced Micro Devices, Inc. HyperTransport is a
licensed trademark of the HyperTransport Technology Consortium.
Other product names used in this presentation are for identification
purposes only and may be trademarks of their respective companies.

Trademark AttributionTrademark Attribution

CAE / IT II 3. LS-DYNA Anwenderforum, Bamberg 2004

E - II -

16

© 2004 Copyright by DYNAmore GmbH

