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ABSTRACT 

The Discrete Shear Gap Method, initially proposed for the elimination of transverse 
shear locking in plate and shell finite elements is extended to a more general con-
cept, applicable to other locking problems, typically causing severe trouble in struc-
tural analysis, especially in the case of thin-walled structures. The outstanding fea-
ture of the proposed formulation is the fact that one unique method is used to avoid 
various different kinds of locking phenomena. It is applicable to beam plate and shell 
elements, but also to two-dimensional and three-dimensional solid elements. The 
fact that approximation quality is often subject to strong sensitivity to mesh distortion 
can be alleviated with the help of stabilization methods. 

INTRODUCTION 

After more than thirty years of intensive research in finite element technology there is 
still a number of  open issues. Today, mostly reduced integration along with hour-
glass control or alternative finite element formulations (e.g. assumed strain elements 
or mixed hybrid methods) are applied. In both cases there are still problems, like “low 
energy modes”, distortion sensitivity and the fact that triangles and tetrahedrons usu-
ally perform unsatisfactorily. 

As a possibility to overcome the problem of transverse shear locking in plates and 
shells Bletzinger at al. [4] proposed the Discrete Shear Gap (DSG) method. The 
method has certain similarities to existing concepts, like the Assumed Natural Strain 
(ANS) method (also called MITC method), but it has some unique features: First, it is 
directly applicable to both triangles and quads, without any further considerations, 
like a particular choice of sampling points or the introduction of additional nodes or 
degrees of freedom. Second, it applies directly to elements of arbitrary polynomial 
order. 

Of course, interest focuses on lower order elements, in particular three-node and 
four-node elements. The four-node DSG element turns out to be exactly equivalent 
to the corresponding ANS-element (the MITC-4 or “Bathe-Dvorkin element” [7]). The 
linear triangle, however, does not seem to have any correspondent in the literature. 
Due to the fact that for the latter one-point integration suffices, while its accuracy 
comes close to the four-node element, this seems to be a particular attractive choice 
for large scale computations of shells. 

In the present paper, the DSG method is extended to a more general concept which 
is applicable to all kinds of structural finite elements. It turns out that the principal 
idea, initially tailored to tackle only transverse shear locking, is suited to handle all 
kinds of geometric locking effects, i.e. all locking effects which depend on certain 
geometric parameters like the shell thickness or the element aspect ratio. 

Model Problem: Linear Timoshenko Beam Element 

In order to explain the basic idea of the concept we consider a linear Timoshenko 
beam finite element. The kinematic equation for the transverse shear strain reads 

βγ +′= w  , 
x

w
w

d

d=′  (1) 

with 
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It is well-known that the reason for shear locking is the linear interpolation of the dis-
placement field w , such that w′  is constant within the element. Thus, a pure bend-
ing deformation (with no shear deformation, i.e. 0=γ ), where the rotation β  is 
linear, cannot be represented with γ  being identically zero within the element. Most 
of the popular concepts, like reduced integration or collocation of shear strains (as-
sumed strain method), relax the resulting over-constraint by concentrating the condi-
tion 0=γ  to one single point. The DSG method works quite similar. 

The first step is to split the transverse deflection w  into a part γw , depending on the 

transverse shear strains, and a part βw  which belongs to bending. This split is 

uniquely obtained by integration of the kinematic equation 

�� +′=+=
xx

xxxxwxwxwxw
ˆ

0

ˆ

0

d)(d)()ˆ()ˆ()ˆ( ββγ , �≤≤ x̂0 . (3) 

Note that βw  is quadratic in a linear element, which is exactly the order needed for a 

constant bending moment according to the underlying differential equation. The func-
tion )ˆ(xwγ  can also be denoted as a shear ‘gap’ because it represents the differ-

ence between the total deformation and the deformation due to bending – thus shear 
deformation. 

Clearly, for pure bending βw  should be identically zero, which is not true in the ele-

ment domain when linear shape functions are used (the reason for locking). But it 
does hold at the nodes. The obvious idea is thus to compute discrete shear gaps at 
the nodes 
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For this particular element 1
γw  is always zero. 2

γw  is zero in the case of pure bend-

ing, which can be easily verified; take for instance the simple case where 21 ww =
and 21 ββ −= . From these nodal values we compute a modified *

γw , simply by 

interpolation from the nodes, 

( ) ( ) 21* 1
2

1
1

2

1
γγγ ξξ www ++−= . (6) 

Eventually, the modified shear strains are obtained by differentiation of *
γw  with re-

spect to x  (note that �2dd =xξ ),
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These shear strains are free from artificial constraints and the corresponding strain 
displacement matrix leads to a locking-free element. In fact, for the linear Ti-
moshenko beam element, the resulting stiffness matrix is identical to the one ob-
tained by reduced integration or an assumed strain method with 0=ξ  as sampling 
point. Certainly, these simple correlations are not directly transferable to the case of 
multidimensional elements. 

Stabilized DSG Plate and Shell Elements 

The extension of this method to shear deformable (“Reissner-Mindlin”) plates and 
shells is straightforward and described in detail in Bletzinger et al. [4] as well as  
Bischoff and Bletzinger [2]. The idea is to compute discrete shear gaps for transverse 
shear strains ξγ  and ηγ , defined in the local element coordinate system, by integra-

tion of the corresponding kinematic equation in ξ - and η -direction, respectively. 

Interpolation and partial differentiation are carried out separately for γξw  and γηw .

Thus, in contrast to the derivation for the beam element, there is no unique split of 
the total deformation, but one for each direction. 

While avoiding formal details – which can be found in the aforementioned papers – 
there are some issues which are worth a comment. First of all, the four-node DSG 
element turns out to be exactly identical to the bilinear ANS element by Dvorkin and 
Bathe [7] (also known as the MITC-4). This similarity, however, is not directly trans-
ferable to triangles. In fact, triangular DSG elements do not seem to have exact cor-
respondents in the existing literature. 

As in the linear triangle DSG-3 the transverse shear strains are constant within the 
element, one-point quadrature suffices for exact integration. It has to be mentioned 
that, regardless of the number of integration points, the element appears to exhibit 
one non-physical zero energy mode. This mode, however, is non-communicable and 
thus it does not cause trouble in practical situations (i.e. meshes with more than one 
element). The linear, triangular DSG element thus represents a two-dimensional 
element with the lowest possible expense: Three nodes and one quadrature point 
(there is obviously no way going below this limit). On the other hand, its accuracy 
comes close to its bilinear counterpart and thus to the well-respected MITC-4. 

In order to overcome the problem of oscillating transverse shear forces and to reduce 
sensitivity to mesh distortion for the MITC-4 element, Lyly et al. [10] proposed the 
application of stabilization methods (see also Codina [6]). Those methods have been 
transferred successfully to DSG elements by Bischoff and Bletzinger [2], [3]. Without 
increasing numerical expense this procedure significantly reduces distortion sensitiv-
ity of the elements and – especially in the case of triangles – appears to be helpful to 
obtain smooth solutions for transverse shear forces. 

The numerical test illustrated in Figure 1 is especially well-suited to detect distortion 
sensitivity of plate elements. Here, a linear analysis of a fully clamped quadratic plate 

( 0.4== yx �� ) under uniform load 4100.1 −⋅=q  is carried out. Material data are 

30000=E , 3.0=ν . Using symmetry, one quarter of the plate it discretized by a 
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structured mesh of 44×  four-node elements (diagonal intersection of the individual 
elements leads to a corresponding mesh with triangles). On the right hand side of 
Figure 1 it is indicated how mesh distortion is controlled with parameter d ,  which is 
varied from 0=d  to 25.0=d .

d0.4=x�

0.4=y�

symm. 

symm. 

Figure 1 Sensitivity to mesh distortion, problem setup 

In a first test, the distortion parameter d  is fixed and the thickness of the plate is 

varied. A scaling of the load with 3t  ensures that, in the thin limit, the displacement is 
independent of the thickness (Kirchhoff-solution). The diagram in Figure 2 shows that 
without stabilization the elements are too stiff in the case of very thin plates. 
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Figure 2 Distortion sensitivity, constant mesh – varying thickness 

Figure 3 shows the results obtained for thickness 01.0=t  and varying distortion 
parameter. While the results of the stabilized element are almost constant with re-
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spect to d , the non-stabilized version gets much too stiff as mesh distortion is in-
creased. The results of both numerical tests are practically the same for triangular 
and quadrilateral elements. It should be mentioned once again that the distortion 
sensitivity of the non-stabilized elements is not a specific feature of the DSG formula-
tion, but shared by other concepts, like the ANS method. 
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Figure 3 Distortion sensitivity, constant thickness – varying mesh distortion 

Discrete Strain Gap Method 

The main objective of this paper is to present the extension of the discrete shear gap 
method to general situations, rephrasing DSG as ‘discrete strain gap’ (see also 
Koschnick et al. [9]). In fact it is possible to tackle not only transverse shear locking in 
plate and shell elements, but – with the exception of volumetric locking – all locking 
effects appearing in structural finite elements. To this end we reinterpret the proce-
dure described by equations (4) and (5) formally as the integration of a kinematic 
equation to discrete nodal strain gaps. This more general viewpoint can be applied to 
all kinds of structural finite elements. 

Let us first consider the case of a two-dimensional plane stress element. The lin-
earized strain components in curvilinear coordinates read 

ξξξξε gu ⋅= , , ηηηηε gu ⋅= , , ( )ξηηξξηε gugu ⋅+⋅= ,,2

1
. (8) 

with  ξξ ,xg =  and ηη ,xg =  representing the covariant base vectors of the corre-

sponding coordinate system. In the context of a finite element formulation, the curvi-
linear coordinates ηξ ,  are identified with the natural element coordinate system. 

While extending the DSG concept into multiple dimensions, the question arises, 
which kinematic equations, or which strain components, respectively, have to be 
integrated with respect to which coordinate direction. For reasons elaborated below 
we choose the following rule: 
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Here, KN  are the standard shape functions, KK ηξ ,  are nodal coordinates in the 

parameter space, N  is the number of nodes per element. This particular choice, 

especially for the mixed term ξηε , is not the only possibility and future research might 

indicate that other versions are preferable. However, it fits into the framework of the 
original DSG method and contains the plate and shell elements developed so far as 
a special case. 

All integrals involved are defined in the parameter space of the element and can be 
obtained analytically in advance, for instance using a computer algebra system, or 
numerically within the code. The coding effort for the element, if a standard dis-
placement formulation is available, is limited to replacing the strain displacement 
operator by the definitions given in equations (9). These definitions apply to both 
triangular and quadrilateral elements and they are independent of the polynomial 
order. Moreover, extension to three dimensions is obviously straightforward. 

In order to clarify the procedure and as a means to explain in some more detail the 
reason for the specific choice of the given definition, let us consider a four node 
quadrilateral element with rectangular geometry (side lengths x�  and y� , yx,

aligned to the natural coordinate directions ηξ , ). With 

{ }1,1,1,14..1, −−==KKξ , { }1,1,1,14..1, −−==KKη , (11) 

( )( )ηηξξ KK
KN −−= 11

4

1
, (12) 

[ ]Tyx uu=u , [ ]Tx 02�=ξg , [ ]Ty 20 �=ηg . (13) 

we obtain for the normal strain in ξ -direction 
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Note that the contributions from nodes 1 and 4 vanish because 41 ξξ =  and thus the 
corresponding integrals are identically zero. 

Analogously, 
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For a formulation in Cartesian coordinates the standard transformation rules apply to 
obtain xxε , yyε  and xyε .

In equations (14) - (16) we first observe that the components ξξε  and ηηε  are identi-

cal to those of a standard displacement formulation. This is due to the fact that the 
element under consideration has a rectangular shape. In general, also these terms 
will differ from the standard format (this is, for instance, important to avoid curvature 
thickness locking, as will be demonstrated later). 

Moreover, one can see the reason for the seemingly arbitrary integration of ξξε  in 

ξ -direction and ηηε  in η -direction. With the procedure at hand it is ensured that 

ξξε  varies linearly in η -direction and vice versa. These strain distributions are sen-

sible for the in-plane bending modes (trapezoidal deformation of an individual ele-
ment). 

The third term ξηε – representing the in-plane shear strains in a rectangular element 

– is constant within the element. The analogy to reduced integration suggests the 
fact that the corresponding finite element will be free from shear locking. This will be 
discussed in more detail in the next section. 

Bilinear 2D-Solid Element Q1-DSG 

Using bilinear shape functions along with the formulae given in the previous section 
leads to the four-node 2d-solid element Q1-DSG which is investigated in the sequel. 
In order to check whether the element is free from shear locking, eigenvalue analy-
ses of the stiffness matrix are performed. As a reference we take the well-established 
Q1-E4, based on the Enhanced Assumed Strain (EAS) method, proposed by Simo 
and Rifai [11] which is known to be free from shear locking. Comparison is also made 
to the standard displacement element Q1 which is not locking-free. 

Figure 4 shows the results for the eigenvalue belonging to one of the in-plane bend-
ing modes which are crucial for shear locking. Q1-DSG produces exactly the same 
results as Q1-E4 and is thus confirmed to be locking-free. The eigenvalues of Q1 get 
higher (i.e. “stiffer”) as the aspect ratio of the element approaches infinity – the typi-
cal symptom for locking. Poisson’s ratio has been set to 0=ν  in this example.
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Figure 4 Eigenvalue analyses of element stiffness matrices, shear locking 
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Figure 5 Eigenvalue analyses of element stiffness matrices, volumetric locking 

If, for a fixed aspect ratio of 1, Poisson’s ratio is gradually increased towards 5.0=ν
the bulk modulus approaches infinity (the limit representing incompressible behavior) 
and volumetric locking comes into play. The results in Figure 5 demonstrate that in 
this case the situation is different. Both Q1 and Q1-DSG exhibit locking, while Q1-E4 
is again locking-free. It has been mentioned already in the introduction that the DSG 
method only tackles “geometric” locking-effects but not volumetric locking which de-
pends on material properties. 
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Another locking effect which is rarely discussed in the literature is called “curvature 
thickness locking” or sometimes “trapezoidal locking” (Sze [12]). It occurs in bending 
of initially curved structures when models are involved that include normal strains in 
thickness direction. This means that curvature thickness locking occurs in bending of 
curved beams or shells when the corresponding beam or shell elements include 
thickness strains (see for instance Büchter et al. [5]). Consequently it also shows up 
if 2d or 3d-solid elements are used to model curved, thin-walled structures (the name 
“trapezoidal locking” reflects the fact that in these cases the individual elements have 
a trapezoidal shape, cf. Figure 6). 
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Figure 6 Bending of curved beam, problem setup 
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Figure 7 Bending of curved beam, curvature thickness locking (trapezoidal locking) 
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Figure 6 illustrates the problem setup for a numerical experiment to test the tendency 
of finite elements to exhibit curvature thickness locking. Note that the force F  is 

scaled with the square of the thickness 2t . Thus, the resulting moment tFM ⋅=  is 

proportional to 3t , like the bending stiffness and consequently, the displacement u
is independent of the thickness for the exact analytical solution. 

In Figure 7 the results obtained with Q1, Q1-E4 and Q1-DSG are plotted versus the 
slenderness tR  of the beam. The present element turns out to be the only one 
which is locking-free. Both Q1 and Q1-E4 fail to represent the correct behavior. As 
already indicated, the reason is curvature thickness locking, resulting from parasitic 
transverse normal strains. The difference between Q1 and Q1-E4 results from shear 
locking which is not present in the EAS element. 

This simple test problem may seem somewhat academic. However, it gains signifi-
cance for instance in cases where shells are computed with 3d-solid elements. This 
can be the case if three-dimensional constitutive laws need to be applied, when 
transverse normal strain and stress effects become significant, or simply when no 
shell elements are available in a certain finite element code. The use of 3d-solid ele-
ments for the analysis of shells can also be sensible to facilitate transition between 
thin and thick parts of complex structures. 

Biquadratic Shell Element Q2-DSG 

Another application of the generalized DSG method presented in this paper is the 
problem of membrane locking in shells. As membrane locking only occurs in curved 
elements it is more pronounced when quadratic shape functions are used. Bilinear 
elements are free from locking when the elements are not warped, as for instance in 
the case of cylinders when structured meshes are used. Linear (triangular) elements 
are always free from membrane locking. 

Membrane locking, like transverse shear locking and curvature thickness locking, 
results in an over-estimation of the bending stiffness and becomes more pronounced 
as the thickness approaches zero. A typical symptom are parasitic membrane 
stresses in the case of “inextensional bending” deformations. 

In order to avoid membrane locking, we apply the general concept given by equa-
tions (9) to the membrane part of a biquadratic shell element (see also Koschnick et 
al. [9]). The corresponding formulation for the transverse shear strains ξζε  and ηζε
has already been presented earlier (see for instance Bischoff [1]) and follows the 
same pattern. For the numerical experiment presented in this section we will focus 
our attention on membrane locking. 

In order to investigate whether the DSG method is capable of removing the effect of 
membrane locking in shell elements we return to the simple problem of a curved 
beam under bending. As we are now dealing with shell elements, this means that a 
small strip of a cylindrical shell is analyzed. Geometry, mesh and problem data are 
sketched in Figure 7. 
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Figure 7 Bending of cylindrical shell, problem setup 

Figure 8 summarizes the results obtained with Q2-DSG and the standard displace-
ment element Q2. Again it can be recognized that application of the DSG method 
effectively removes locking. Note that transverse shear locking does not play a role 
for this special problem because already the standard displacement element Q2 is 
able to represent a constant bending moment without artificial transverse shear 
strains. Thus, the artificial stiffening effect observed in the diagram in Figure 8 is 
completely due to membrane locking. 
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Convergence and the Patch Test 

DSG elements do not satisfy the patch test for constant stresses if the elements are 
distorted within the “plane of integration” of the shear gaps. This means that Q1-
DSG, as presented in one of the previous sections, is unable to represent a constant 
stress state if it is distorted in the ξη -plane (which is the only possible distortion 

anyway), because strains in ξ - and η -directions are modified. In contrast to that, 

DSG plate elements, where the transverse shear strains ξζε  and ηζε  are modified, 
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do satisfy the patch test, because also here the distortion occurs in the ξη -plane 
and no strains in this plane have been modified. 

It is generally accepted that satisfaction of the patch test is mathematically neither 
necessary nor sufficient for convergence. We do not want to go into technical details 
of convergence of finite elements in this context. Under certain circumstances it can 
be stated that the significance of the patch test depends on the way the element 
stiffness matrix changes as the element size approaches zero: If there is some de-
pendence on the element size, convergence can be achieved without satisfaction of 
the patch test. This is the case for plate and shell elements, where the side lengths 
go to zero while the thickness remains constant. Thus, in the limit of an infinite num-
ber of elements, the parts of the stiffness matrix which prevent satisfaction of the 
patch test vanish and convergence is guaranteed. The stiffness matrix of a 2d-solid 
element, however, does only depend on its shape but is independent of its size and 
thus there is no convergence if the patch test is not satisfied. 

However, changes of the stiffness matrix in dependence of the element size can not 
only occur naturally, as in plates, but can also be introduced artificially, for instance 
with the help of stabilization methods (e.g. Hughes [8]). This is one possibility to en-
sure convergence for Q1-DSG in general cases. Efforts in this direction represent 
research in progress. 

From a practical point of view, the situation appears to be less dramatic than it 
seems. First of all, convergence is in fact assured if, in the thin limit, element distor-
tions vanish. This applies if structured meshes are used or if mesh refinement is 
achieved by element subsection. Moreover, the most important feature of an efficient 
finite element for practical applications is coarse mesh accuracy which is not directly 
connected to satisfaction of the patch test. 

Summary and Conclusions 

A generalization of the Discrete Shear Gap method to the Discrete Strain Gap 
method has been presented. The idea essentially involves integration of kinematic 
equations to discrete strain gaps at the nodes and subsequent interpolation and dif-
ferentiation to obtain modified strain displacement relations. It has been shown that 
the method contains the potential to alleviate all geometric locking effects thus repre-
senting a unique methodology that could replace the numerous different concepts 
which are applied today to avoid different kinds of locking. 

It is remarkable that, although the DSG method has originally been developed espe-
cially for transverse shear locking in plates and shells, no special adjustments or 
extensions of the basic concept were necessary to handle not only transverse shear 
locking, but also in-plane shear locking, curvature thickness locking and membrane 
locking. 

Of course, the presented elements and the numerical experiments investigated in the 
present study only scratch the surface of a thorough development. Research efforts 
in the future will especially focus on convergence, either satisfying or circumventing 
the patch test and on distortion sensitivity. Moreover, it should be mentioned once 
again that volumetric locking cannot be cured with the DSG method and requires 
combination with other methods. It is, for instance, no problem to combine the DSG 
method and the EAS method within one element. 

4th European LS-DYNA Users Conference                  Implicit / New Developments

H – I - 61 



References 

1. BISCHOFF, M. (1999) "Theorie und Numerik einer dreidimensionalen Schalen-
formulierungen",Ph.D. Thesis, Institut für Baustatik, Universität Stuttgart. 

2. BISCHOFF, M., BLETZINGER, K.-U. (2001) "Stabilized DSG Plate and Shell 
Elements", Trends in Computational Structural Mechanics, CIMNE, Barcelona, 
pp. 253-263. 

3. BISCHOFF, M. BLETZINGER, K.-U. “Improving stability and accuracy of plate 
finite elements via algebraic subgrid scale stabilization”, submitted to: Computer 
Methods in Applied Mechanics and Engineering. 

4. BLETZINGER, K.-U., BISCHOFF, M., RAMM, E. (2000) "A unified approach for 
shear-locking free triangular and rectangular shell finite elements",Computers 
and Structures 75, pp. 321-334. 

5. BÜCHTER, N., RAMM, E., ROEHL, D. (1994) “Three-dimensional extension of 
nonlinear shell formulation based on the enhanced assumed strain concept”, In-
ternational Journal for Numerical Methods in Engineering 37, pp. 2551-2568. 

6. CODINA, R. (2001) "Finite element approximation of the Reissner-Mindlin plate 
problem using subgrid scale stabilization" , Trends in Computational Structural 
Mechanics, CIMNE, Barcelona, pp. 264-272. 

7. DVORKIN, E.N., BATHE, K.-J. (1984) “A continuum based four-node shell ele-
ment for general nonlinear analysis”, Engineering Compuations 1, pp. 77-88. 

8. HUGHES, T.J.R. (1995), “Multiscale phenomena: Green’s functions, the 
Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins 
of stabilized formulations”, Computer Methods in Applied Mechanics and Engi-
neering 127, pp. 387-401. 

9. KOSCHNICK, F., BISCHOFF, M., BLETZINGER, K.-U. (2002) “Avoiding mem-
brane locking with the DSG method”, Proceedings of WCCM V, 
http://wccm.tuwien.ac.at. 

10. LYLY, M., STENBERG, R., VIHINEN, T. (1993) “A stabile bilinear element for the 
Reissner-Mindlin plate model”, Computer Methods in Applied Mechanics and 
Engineering 110, pp. 343-357. 

11. SIMO, J.C., RIFAI, S. (1990) “A class of mixed assumed strain methods and the 
method of incompatible modes”, International Journal for Numerical Methods in 
Engineering 29, pp. 1595-1638. 

12. SZE, K.Y. (2000) “On immunizing five-beta hybrid stress elements from ‘trape-
zoidal locking’ in practical analyses”, International Journal for Numerical Methods 
in Engineering 47, pp. 907-920. 

Implicit / New Developments 4th European LS-DYNA Users Conference

H – I - 62 


