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Optimization Methodology 
LS-OPT User’s Manual © Copyright, Livermore Software Technology Corp. 
Sections 2.1 through 2.5.4 
 
2.1 Introduction 
 
In the conventional design approach, a design is improved by evaluating its response and making design 
changes based on experience or intuition. This approach does not always lead to the desired result, that of a 
‘best’ design, since design objectives are sometimes in conflict, and it is not always clear how to change the 
design to achieve the best compromise of these objectives. A more systematic approach can be obtained by 
using an inverse process of first specifying the criteria and then computing the ‘best’ design. The procedure by 
which design criteria are incorporated as objectives and constraints into an optimization problem that is then 
solved, is referred to as optimal design. 
 
The state of computational methods and computer hardware has only recently advanced to the level where 
complex nonlinear problems can be analyzed routinely. Many examples can be found in the simulation of 
impact problems and manufacturing processes. The responses resulting from these time-dependent processes 
are, as a result of behavioral instability, often highly sensitive to design changes. Program logic, as for instance 
encountered in parallel programming or adaptivity, may cause spurious sensitivity. Roundoff error may further 
aggravate these effects, which, if not properly addressed in an optimization method, could obstruct the 
improvement of the design by way of corrupting the function gradients. 
 
Among several methodologies available to address optimization in this design environment, response surface 
methodology (RSM), a statistical method for constructing smooth approximations to functions in a multi-
dimensional space, has achieved prominence in recent years. Rather than relying on local information such as a 
gradient only, RSM selects designs that are optimally distributed throughout the design space to construct 
approximate surfaces or ‘design formulae’. Thus, the local effect caused by ‘noise’ is alleviated and the method 
attempts to find a representation of the design response within a bounded design space or smaller region of 
interest. This extraction of global information allows the designer to explore the design space, using alternative 
design formulations. For instance, in vehicle design, the designer may decide to investigate the effect of varying 
a mass constraint, while monitoring the crashworthiness responses of a vehicle. The designer might also decide 
to constrain the crashworthiness response while minimizing or maximizing any other criteria such as mass, ride 
comfort criteria, etc. These criteria can be weighted differently according to importance and therefore the design 
space needs to be explored more widely. 
 
Part of the challenge of developing a design program is that designers are not always able to clearly define their 
design problem. In some cases, design criteria may be regulated by safety or other considerations and therefore 
a response has to be constrained to a specific value. These can be easily defined as mathematical constraint 
equations. In other cases, fixed criteria are not available but the designer knows whether the responses must be 
minimized or maximized. In vehicle design, for instance, crashworthiness can be constrained because of 
regulation, while other parameters such as mass, cost and ride comfort can be treated as objectives to be 
weighted according to importance. In these cases, the designer may have target values in mind for the various 
response and/or design parameters, so that the objective formulation has to be formulated to approximate the 
target values as closely as possible. Because the relative importance of various criteria can be subjective, the 
ability to visualize the trade-off properties of one response vs. another becomes important. 
 
Trade-off curves are visual tools used to depict compromise properties where several important response 
parameters are involved in the same design. They play an extremely important role in modern design where 
design adjustments must be made accurately and rapidly. Design trade-off curves are constructed using the 
principle of Pareto optimality. This implies that only those designs of which the improvement of one response 
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will necessarily result in the deterioration of any other response are represented. In this sense no further 
improvement of a Pareto optimal design can be made: it is the best compromise. The designer still has a choice 
of designs but the factor remaining is the subjective choice of which feature or criterion is more important than 
another. Although this choice must ultimately be made by the designer, these curves can be helpful in making 
such a decision. An example in vehicle design is the trade-off between mass (or energy efficiency) and safety. 
 
Adding to the complexity, is the fact that mechanical design is really an interdisciplinary process involving a 
variety of modeling and analysis tools. To facilitate this process, and allow the designer to focus on creativity 
and refinement, it is important to provide suitable interfacing utilities to integrate these design tools. Designs are 
bound to become more complex due to the legislation of safety and energy efficiency as well as commercial 
competition. It is therefore likely that in future an increasing number of disciplines will have be integrated into a 
particular design. This approach of multidisciplinary design requires the designer to run more than one case, 
often using more than one type of solver. For example, the design of a vehicle may require the consideration of 
crashworthiness, ride comfort, noise level as well as durability. Moreover, the crashworthiness analysis may 
require more than one analysis case, e.g. frontal and side impact. It is therefore likely that as computers become 
more powerful, the integration of design tools will become more commonplace, requiring a multidisciplinary 
design interface. 
 
Modern architectures often feature multiple processors and all indications are that the demand for distributed 
computing will strengthen into the future. This is causing a revolution in computing as single analyses that took 
a number of days in the recent past can now be done within a few hours. Optimization, and RSM in particular, 
lend themselves very well to being applied in distributed computing environments because of the low level of 
message passing. Response surface methodology is efficiently handled, since each design can be analyzed 
independently during a particular iteration. Needless to say, sequential methods have a smaller advantage in 
distributed computing environments than global search methods such as RSM. 
 
The present version of LS-OPT also features Monte Carlo based point selection schemes and optimization 
methods. The respective relevance of stochastic and response surface based methods may be of interest. In a 
pure response surface based method, the effect of the variables is distinguished from chance events while Monte 
Carlo simulation is used to investigate the effect of these chance events. The two methods should be used in a 
complimentary fashion rather than substituting the one for the other. In the case of events in which chance plays 
a significant role, responses of design interest are often of a global nature (being averaged or integrated over 
time). These responses are mainly deterministic in character. The full vehicle crash example in this manual can 
attest to the deterministic qualities of intrusion and acceleration pulses. These types of responses may be highly 
nonlinear and have random components due to uncontrollable noise variables, but they are not random.  
 
Stochastic methods have also been touted as design improvement methods. In a typical approach, the user 
iteratively selects the best design results of successive stochastic simulations to improve the design. These 
design methods, being dependent on chance, are generally not as efficient as response surface methods. 
However, an iterative design improvement method based on stochastic simulation is available in LS-OPT. 
 
Stochastic methods have an important purpose when conducted directly or on the surrogate (approximated) 
design response in reliability based design optimization and robustness improvement. This methodology is 
currently under development and will be available in future versions of LS-OPT. 
 
Theory of Optimization 
 
Optimization can be defined as a procedure for “achieving the best outcome of a given operation while 
satisfying certain restrictions” [17]. This objective has always been central to the design process, but is now 
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assuming greater significance than ever because of the maturity of mathematical and computational tools 
available for design. 
 
Mathematical and engineering optimization literature usually presents the above phrase in a standard form as 
 min )(xf   ( 0.1) 
subject to 

mjg j ,,2,1;0)( K=≤x  

and 
lkhk ,,2,1;0)( K==x  

 
where f, g and h are functions of independent variables x1, x2, x3, …, xn. The function f, referred to as the cost or 
objective function, identifies the quantity to be minimized or maximized. The functions g and h are constraint 
functions which represent the design restrictions. The variables collectively described by the vector x are often 
referred to as design variables or design parameters. 
 
The two sets of functions gj and hk define the constraints of the problem. The equality constraints do not appear 
in any further formulations presented here because algorithmically each equality constraint can be represented 
by two inequality constraints in which the upper and lower bounds are set to the same number, e.g. 
 0)( =xkh  ~ 0)(0 ≤≤ xkh  ( 0.2) 
Equations (2.1) then become 

 min )(xf  ( 0.3)  
subject to 

mjg j ,,2,1;0)( K=≤x  

 
The necessary conditions for the solution *x  to Eq. (2.3) are the Karush-Kuhn-Tucker optimality conditions: 
 
 ( ) ( ) 0=∇+∇ ** xgx Tf λ  ( 0.4) 

( ) 0=*xgTλ  

( ) 0* ≤xg  
0≥λ . 

 
 

These conditions are derived by differentiating the Lagrangian function of the constrained minimization 
problem 
 ( ) ( ) ( )xgxx TfL λ+=  ( 0.5) 
and applying the conditions 
 0* ≥∂∇ xfT  (optimality)  ( 0.6) 
and 
 0≤∂∇ *xgT  (feasibility)  ( 0.7) 

to a perturbation *x∂ . 
 

jλ  are the Lagrange multipliers which may be nonzero only if the corresponding constraint is active, i.e.  

( ) 0* =xjg . 
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For *x  to be a local constrained minimum, the Hessian of the Lagrangian function, ( ) ( )*2*2 xgx ∇+∇ Tf λ  on 

the subspace tangent to the active constraint g  must be positive definite at *x . 
 
These conditions are not used explicitly in LS-OPT and are not tested for at optima. They are more of 
theoretical interest in this manual, although the user should be aware that some optimization algorithms are 
based on these conditions. 
 
2.2 Gradient Computation and the Solution of Optimization Problems 
 
Solving the optimization problem requires an optimization algorithm. The list of optimization methods is long 
and the various algorithms are not discussed in any detail here. For this purpose, the reader is referred to the 
texts on optimization, e.g. [29] or [17]. It should however be mentioned that the Sequential Quadratic 
Programming method is probably the most popular algorithm for constrained optimization and is considered to 
be a state-of-the-art approach for structural optimization [4,53]. In LS-OPT, the subproblem is optimized by an 
accurate and robust gradient-based algorithm: the dynamic leap-frog method [48]. Both these algorithms and 
most others have in common that they are based on first order formulations, i.e. they require the first derivatives 
of the component functions 
 

idxdf  and ij dxdg  

 
in order to construct the local approximations. These gradients can be computed either analytically or 
numerically. In order for gradient-based algorithms such as SQP to converge, the functions must be continuous 
with continuous first derivatives. 
 
Analytical differentiation requires the formulation and implementation of derivatives with respect to the design 
variables in the simulation code. Because of the complexity of this task, analytical gradients (also known as 
design sensitivities) are mostly not readily available. 
 
Numerical differentiation is typically based on forward difference methods that require the evaluation of n 
perturbed designs in addition to the current design. This is simple to implement but is expensive and hazardous 
because of the presence of round-off error. As a result, it is difficult to choose the size of the intervals of the 
design variables, without risking spurious derivatives (the interval is too small) or inaccuracy (the interval is too 
large). Some discussion on the topic is presented in Reference [17]. 
 
As a result, gradient-based methods are typically only used where the simulations provide smooth responses, 
such as linear structural analysis and certain types of nonlinear analysis. 
 
In non-linear dynamic analysis such as the analysis of impact or metal-forming, the derivatives of the response 
functions are mostly severely discontinuous. This is mainly due to the presence of friction and contact. The 
response (and therefore the sensitivities) may also be highly nonlinear due to the chaotic nature of impact 
phenomena and therefore the gradients may not reveal much of the overall behavior. Furthermore, the accuracy 
of numerical sensitivity analysis may also be adversely affected by round-off error. Analytical sensitivity 
analysis for friction and contact problems is a subject of current research. 
 
It is mainly for the above reasons that researchers have resorted to global approximation methods for smoothing 
the design response. The art and science of developing design approximations has been a popular theme in 
design optimization research for decades (for a review of the various approaches, see e.g. Reference [5] by 
Barthelemy). Barthelemy categorizes two main global approximation methods, namely response surface 
methodology [10] and neural networks [19]. 



 

5 

 
In the present implementation, the gradient vectors of general composites based on mathematical expressions of 
the basic response surfaces are computed using numerical differentiation. A default interval of 1/1000 of the 
size of the design space is used in the forward difference method. 
 
2.3 Normalization of constraints and variables 
 
It is a good idea to eliminate large variations in the magnitudes of design variables and constraints by 
normalization. 
 
In LS-OPT, the typical constraint is formulated as follows: 
 

 
 mjUgL jjj ,,2,1;)( K=≤≤ x  ( 0.8) 

 
which, when normalized becomes: 

 

 mj
g

U

g

g

g

L

j

j

j

j

j

j ,,2,1;
)()(

)(

)(
K=≤≤

000 xx

x

x
 ( 0.9) 

 
where x0 is the starting vector. The normalization is done internally. 
 
The design variables have been normalized internally by scaling the design space [xL ; xU] to [0;1], where xL is 
the lower and xU the upper bound. The formula 
 

 
iLiU

iLi
i xx

xx

−
−=ξ  ( 0.10) 

 
is used to transform each variable xi to a normalized variable, iξ . 

 
When using LS-OPT to minimize maximum violations, the responses must be normalized by the user. This 
method is chosen to give the user the freedom in selecting the importance of different responses when e.g. 
performing parameter identification. Section  2.15.3 will present this application in more detail. 
 

2.4 Response Surface Methodology 
 

An authoritative text on Response Surface Methodology [34] defines the method as “a collection of statistical 
and mathematical techniques for developing, improving, and optimizing processes.” Although an established 
statistical method for several decades [9], it has only recently been actively applied to mechanical design [54]. 
Due to the importance of weight as a criterion and the multidisciplinary nature of aerospace design, the 
application of optimization and RSM to design had its early beginnings in the aerospace industry. A large body 
of pioneering work on RSM was conducted in this and other mechanical design areas during the eighties and 
nineties [22,43,54,55]. 
 
Although inherently simple, the application of response surface methods to mechanical design has been 
inhibited by the high cost of simulation and the large number of analyses required for many design variables. In 
the quest for accuracy, increased hardware capacity has been consumed by greater modeling detail and therefore 
optimization methods have remained largely on the periphery of the area of mechanical design. In lieu of formal 
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methods, designers have traditionally resorted to experience and intuition to improve designs. This is seldom 
effective and also manually intensive. Moreover, design objectives are often in conflict, making conventional 
methods difficult to apply, and therefore more analysts are formalizing their design approach by using 
optimization. 
 

2.5.1 Approximating the response 
 

Response Surface Methodology (or RSM) requires the analysis of a predetermined set of designs. A design 
surface is fitted to the response values using regression analysis. Least squares approximations are commonly 
used for this purpose. The response surfaces are then used to construct an approximate design “subproblem” 
which can be optimized. 
 

The response surface method relies on the fact that the set of designs on which it is based is well chosen. 
Randomly chosen designs may cause an inaccurate surface to be constructed or even prevent the ability to 
construct a surface at all. Because simulations are often time-consuming and may take days to run, the overall 
efficiency of the design process relies heavily on the appropriate selection of a design set on which to base the 
approximations. For the purpose of determining the individual designs, the theory of experimental design 
(Design of Experiments or DOE) is required. Several experimental design criteria are available but one of the 
most popular for an arbitrarily shaped design space is the D-optimality criterion. This criterion has the 
flexibility of allowing any number of designs to be placed appropriately in a design space with an irregular 
boundary. The understanding of the D-optimality criterion requires the formulation of the least squares problem. 
 

Consider a single response variable y dependent upon a number of variables x. The exact functional relationship 
between these quantities is 
 

 )(xη=y  ( 0.11) 
 
The exact functional relationship is now approximated (e.g. polynomial approximation) as 
 

 )()( xx f≈η  ( 0.12) 
 
The approximating function f is assumed to be a summation of basis functions: 

 )()(
1

xx ∑
=

=
L

i
iiaf φ  ( 0.13) 

where L is the number of basis functions iφ  used to approximate the model. 

 

The constants [ ]T
Laaa ,,, 21 K=a  have to be determined in order to minimize the sum of the square error: 

 { } ∑ ∑∑
= == 






 −=−

P

p
p

L

i
iip

P

p
pp ayfy

1

2

11

2 )]()([)]()([ xxxx φ  ( 0.14) 

 
P is the number of experimental points and y is the exact functional response at the experimental points xi. 
 

The solution to the unknown coefficients is: 
 
 yXXXa TT 1)( −=  ( 0.15) 
 
 
where X  is the matrix 
 )]([][ uiuiX xX φ==  ( 0.16) 
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The next critical step is to choose appropriate basis functions. A popular choice is the quadratic approximation 
 T

nnn xxxxxxxx ],,,,,,,,,1[ 2
121

2
11 KKK=φ  ( 0.17) 

but any suitable function can be chosen. LS-OPT allows linear, elliptical (linear and diagonal terms), interaction 
(linear and off-diagonal terms) and quadratic functions. 
 

2.5.2 Factors governing the accuracy of the response surface 
 

Several factors determine the accuracy of a response surface [34]. 
 

1. The size of the subregion. 
For problems with smooth responses, the smaller the size of the subregion, the greater the accuracy. For the 
general problem, there is a minimum size at which there is no further gain in accuracy. Beyond this size, the 
variability in the response may become indistinguishable due to the presence of ‘noise’.  

 

2. The choice of the approximating function. 
Higher order functions are generally more accurate than lower order functions. Theoretically, over-fitting 
(the use of functions of too high complexity) may occur and result in suboptimal accuracy, but there is no 
evidence that this is significant for polynomials up to second order [34]. 

 

3. The number and distribution of the design points. 
For smooth problems, the prediction accuracy of the response surface improves as the number of points is 
increased. However, this is only true up to roughly 50% oversampling [34] (very roughly). 

 

2.5.3 Advantages of the method 
 

•  Design exploration 
As design is a process, often requiring feedback and design modifications, designers are mostly interested in 
suitable design formulae, rather than a specific design. If this can be achieved, and the proper design 
parameters have been used, the design remains flexible and changes can still be made at a late stage before 
verification of the final design. This also allows multidisciplinary design to proceed with a smaller risk of 
having to repeat simulations. As designers are moving towards computational prototyping, and as parallel 
computers or network computing are becoming more commonplace, the paradigm of design exploration is 
becoming more important. Response surface methods can thus be used for global exploration in a parallel 
computational setting. For instance, interactive trade-off studies can be conducted. 
 

•  Global optimization 
Response surfaces have a tendency to capture globally optimal regions because of their smoothness and 
global approximation properties. Local minima caused by noisy response are thus avoided. 
 

2.5.4 Other types of response surfaces  
 

Neural network approximations can also be used as response surfaces and are discussed in section2,13. 
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4th European LS-DYNA Conference 
May 2003 to be held in Ulm, Germany 

Submitted Papers  
 

REDUCED CONFERENCE FEE:  Early registration before 28th February 2003  
 
Crash- / Automotive Applications 

CAE Simulations onto Passive Safety focused on the Porsche Cayenne - the Transition to New 
Technologies 

Schelkle E., Klamser H., Dr. Ing. h. c. F. Porsche AG 
How to Develop a Five Star Car by using LS-DYNA 

Malcusson R., Saab Automobile AB 
Consideration of Manufacturing Effects to Improve Crash Simulation Accuracy 

Böttcher C.-S., Frik S., Adam Opel AG 
The Development of the new XJ Jaguar in Advanced Aluminium; Opportunities and Challenges 

Zeguar T., Jaguar Cars Ltd. 
The Evaluation of Crashworthiness of Vehicles with Forming Effects 

Kim H., KIA Motors;  Hong S., Korea Advanced Institute of Science and Techn. 
Safety Analysis of the New ACTROS Cabins According to  ECE-R29/02  

Raich H., DaimlerChrysler AG 
Integration of Simulation in the development Process 

Brockmann J., Faurecia GmbH & Co. KG 
Strength Analysis of Seat Belt Ancorage According to ECE R14 and FMVSS 210 

Hessenberger K., DaimlerChrysler AG 
Validation of New Train Railway Rolling Stock using Finite Element Analysis 

Ricketts B., Bombardier Transportation UK Ltd. 
Impact Performance of Flexible Guardrail Systems using LS-DYNA 

Sennah K., Samaan M., Elmarakbi A., Univ. of Toronto 
Forming to Crash Simulation in Full Vehicle Models 

Cafolla J., Hall R.W., Norman D.P., McGregor I.J., Corus Automotive Engineering 
Improving the Roadside Safety with Computational Simulations 

Vesenjak M., Ren Z., University of Maribor 
Development of an Energy Absorbing Concept for Automotive Applications using  
Dynamic Simulation Method  

Owens P., Cellbond Ltd. 
Reasons for Scatter in Crash Simulation results 

Thole C.-A., Liguan M., FhG-SCAI  
Using Modal Representation, Mesh Coarsing Approaches to Reduce the CPU Demand for VPG 
Applications  

Nasser T., eta Engineering Technology Associates 
Tire Modeling 

Oshita F., Japan Research Institute 
Development and Applications of Modal Presentation 

Tang A., eta Engineering Technology Associates 
Pedestrian and Occupant Safety / Airbag Modelling 

Development and Validation of Numerical Pedestrian Impactor Models  
Frank Th., DaimlerChrysler AG; Kurz A., LASSO GmbH; Pitzer M., PENG GmbH; Söllner M., 
Dr. Ing. h. c. F. Porsche AG 
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Numerical and Experimental Study on Fracture of Chute Structure at Deployment of Invisible 
Passenger Side Airbag 

Kangwook L., Hyundai Mobiles 
Finite Element Models for European Testing, a Side Impact Barrier to WG-13 and Pedestrian 
Impactors WG17 

Dutton T., ARUP 
Prediction of Occupant Injury in an Out-Of-Position Impact Using the Fluid Structure Interaction 
Capabilities in LS-DYNA  

Marklund P.-O., Engineering Research Nordic AB; Pipkorn B., Autoliv Research AB 
*MAT_GAS_MIXTURE, A New Gas Mixture Model for Airbag Applications 

Olovsson L., Livermore Software Technology Corp. 
On Airbag Simulation in LS-DYNA with the Use of the Arbitrary Eulerian Method 

Fokin D., Fredriksson L., Lokhande N., Altair GmbH 
FTSS Dummy Model Updates 

Huang Y., First Technology Safety Systems 
Application of MADYMO Occupant Models in LS-DYNA/MADYMO Coupling 

Happee R., Janssen A.J., Fraterman E., Monster J.W., TNO Automotive  
FAT Dummy Models for Side Impact 

Franz U., Schuster P., Schmid W., DYNAmore GmbH 
Crash Simulation in Pedestrian Protection 

Dörr S., Chladek H., IHF 
Biomechanical Analysis of Whiplash Injuries; Women are not Scaled Down Men 

Mordaka J., Gentle C. R., Univ. of Nottingham 
Material Modelling  

The Application of the Damage and Fracture Material Model to Crashworthiness Evaluations for 
Aluminum cars  

Tsuchida T., Toyota Motor Corp. 
Application of Configurational Forces in Finite Element Simulations 

Kolling S., Ackermann D., DaimlerChrysler AG 
A Simplified Approach for the Simulation of Rubber under Dynamic Loading 

Du Bois P., Consultant 
Improved Plasticity and Failure Models for Extruded Mg-Profiles in Crash Simulations 

Oberhofer G., MATFEM; Lanzerath  H., Wesemann  J., Ford Research Center 
Hombergsmeier E., EADS Corporate Research Center 

Strain Rate Dependent Micro-mechanics Based Composite Material Model 
Tabiei A., Ivanov I., University of Cincinnati 

Implementation and Validation of the J-H2 Ceramic Material Model in LS-DYNA 
Cronin D. S., Bui  K., Berstad T., Kaufmann C., McIntosch G., University of Waterloo 

On Constitutive Equations for Elastomers and Elastomeric Foams 
Feng W.W., Hallquist J.O., Livermore Software Technology Corp. 

Implementation of a Material Model for TRIP Steels in LS-DYNA and Comparison with Test 
Results 

Hilding D., Engineering Research Nordic AB; Scheding E., Avesta Polaroit AB 
Maritime / Aerospace (Fluid-Structure Interaction) 

LS-DYNA Applications in Shipbuilding 
Le Sourne H., Besnier F., Couty N., Principa Marine ; Legarve H., DCN Ingénierie 

Jet Engine Fan Blade Containment using Two Alternate Geometries 
Carney K., Pereira M., Revilok D., NASA Res. Center; Matheny P., Florida Turbine Technology 

Hydrodynamic Ram Analysis of Non-Exploding Projectile Impacting Water 
Poehlmann-Martins F., Gabrys J., The Boeing Company; Souli M., University of Lille 
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The Dynamical Behaviors Analysis of Power Transmission Line with Wind Consideration  
Nguyen T. L., Korea Maritim University 

The Use of LS-DYNA Fluid-Structure Interaction to Simulate Fluid-Driven Deformation in the 
Aortic Valve 

Carmody C.J., MG Bennett & Associates Ltd; Burriesci G., Sorin Biomedica Cardio; 
Howard I.C., Patterson E.A., University of Sheffield 

ALE and Fluid Structure Interaction in LS-DYNA 
Souli M., University of Lille; Olovsson L., Livermore Software Technology Corp 

Metal Forming  
Application of Dynamic Explicit in the Simulation of Superplastic Forming 

Samekto H., University of Stuttgart; Roll K., DaimlerChrysler AG 
New Developments at the forming Simulation of Hydroforming Processes 

Keigler M., Hall R., Mihsein M., Bauer H., Aalen University of Applied Science 
Influence of the Effect of Strain Rates on Springback in Aluminium 2024 

Kulkarni P., Cessna Aircraft Company 
Finite Element Analysis of Contact Stresses Due to Spherical Contact Conditions on an Elastic 
Surface 

Ram A., Danckert J., Faurholdt T.,  Aalborg University; Rietz H., Danish Technological Institute 
Virtual Die Tryout of Miniature Stamping Parts 

Yang  M.-C., Tsai  T.-C., Metal Industries R&D Center 
Sheet Metal Forming in a Virtual Reality Environment using LS-DYNA and Neural Networks 

Gokhale A., Wichita State University 
More Realistic Virtual Prototypes by Means of Process Chain Optimization 

Gantner P., Harrison D.K., DeSilva A.K.M., Bauer H., Aalen University of Applied Science 
New Trends in Sheet Metal Forming 

Buchert J., Harrison D.K., DeSilva A.K.M., Bauer H., Aalen University of Applied Science 
Stress Analysis of Connector PIN Produced by Reverse Stamping Process 

Won Y.-H., LG-Cable Ltd. 
Simulation of the Forming Process of Metal-Plastic-Metal Sheets 

Borg R., Engineering Research Nordic AB 
Optimization  

Shape Adaptive Airfoils for Turbomachinery Applications: Simulation and Optimization 
Müller T., Lawerenz M., University of Kassel 

Stochastic Optimization in LS-OPT 
Stander N., Roux W.J., Livermore Software Techn. Corp; Giger M., Redhe M., Linkoping 
University 

System Identification and Design Optimization of "Noisy" Structural Problems: Probabilistic and 
Deterministic Fundamentals 

Stander N., Roux W.J., Livermore Software Techn. Corp. 
Geometry Optimization using Stochastic Methods 

Höfer C., Sakaryali C., EASi Engineering GmbH 
Optimization of a Cockpit Structure according to ECE-R 21 Regulation 

Walter M., Chladek H., IHF 
A Method for Modifying the Forming Tool Geometry in Order to Compensate for Springback 
Effects 

Jernberg A., Engineering Research AB 
New Developments / Theory 

Recent Developments in LS-DYNA 
Hallquist J.O., Livermore Software Technology Corp. 
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Theory of Contact Algorithms 

Wriggers P., University of Hannover 
Using LS-Dyna for Heat Transfer 

                         Shapiro A., Livermore Software Technology Corporation 
Stabilized DSG Elements - A New Paradigm in Finite Element Technology 

Bischoff M., Koschnick F., Bletzinger K.-U., Univ. Munich 
Implicit Analysis using LS-DYNA 

Grimes R., Livermore Software Technology Corp. 
Simulation of Full-Scale Seismic-Resistant Structural Frame Tests Using LS-DYNA 960 Implicit 
Solver 

Walker B., ARUP; Fielding C.J., Ove Arup & Partners California Ltd. 
Examples Manual for *User_Loading Option 

Adoum  M., Lapoujade  V., CRIL Technology 
LS-DYNA Beam Element Cross Section Interaction - An Assessment 

Schwer  L., Schwer Engineering & Consulting Services 
Drop Test / Impact  

Structural Design Review of LCD-TV Module by Impact Analysis 
Choi S., Lee J.-G., Samsung Electronics Co. 

The Relation between Initial Yaw and Long Rod Pro-jectile Shape After Penetration an Oblique 
Thin Plate 

Arad M., Tuati D., Latovitz I., Israel Military Industries 
Simulation of a Drop onto a Punch of a Transport Container for Nuclear Fuel Assemblies
 Marchaud G., Werle J., Cogema Logistics 
Drop Test Simulation of a Transport Container for Highly Active Nuclear Waste 

Werle J., Marchaud G., Cogema Logistics 
Numerical Simulation of a Flight Recorder's; Protective Case Penetration Resistance Test 

Ryabov A., Romanov V., Kukanov S., Roschihmarov D., Sarov Open Computing Center 
Numerical Modelling of Impacts on Ski Safety Nets 

Adoum M., Lapoujade V., CRIL Technology 
Impact on Textiles 

Schweizerhof K., DYNAmore GmbH; Finckh H., ITV Denkendorf 
MPP / Linux-Cluster / Hardware Performance 

LS-DYNA on MPP Platforms, Experience and Practical Recommendations 
Jankowski U., Tecosim GmbH 

LS-DYNA on Linux-Cluster at EDAG - Use Case 
Hanlon J., EDAG Engineering+Design AG 

Performance of LS-DYNA on Intel Itanium; 2 Processor-Based Clusters 
Chaltas G., Prince T., Margo W., Jonsson L., Intel Corp. 

The New Paradigm Shift for High-Performance Computing 
Cornelius H., Intel GmbH 

Considerations for LS-DYNA Efficiency in the SGI IRIX and Linux Environments with a NUMA 
System Architecture  

Posey S., Meng N., Silicon Graphics 
Performance of LS-DYNA on hpcLine Linux Clusters 

Altmeyer K., Fujitsu Siemens Computers GmbH 
Linux Cluster - Computer Power Out of the Box 

Gaier K., science+computing ag 
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A Correlation Study between MPP LS-DYNA Performance and Various Interconnection 
Networks 

Lin Y.-Y., Hewlett-Packard Ltd. 
Itanium - A Viable Cost-Effective Technology for Crash Simulation 

Hillcoat A., Hewlett-Packard Ltd. 
Recent Developments of LS-DYNA Computation in Sun Microsystems 

Roh Y.-S., Fong H., Sun Microsystems Inc. 
LS-DYNA Environment 

CAE Data Management and Quality Assessment of LS-DYNA Crash Models using V-CESS 
Eick M., Seybold J., Fredriksson L., Altair GmbH 

Automating LS-DYNA Simulation Processes using SOFY/RADE 
Ulrich D., Sofy GmbH 

scFEMod - The New Preprocessor for Efficient Assembly and Model Validation 
Gaier K., science+computing ag 

Platform and LS-DYNA, solutions for design & simulation - today and tomorrow 
Slominsky M., Reichert C., Platform Computing GmbH 

Automatic Assembly of a Full Car Crash Model using MEDINA 7.2 
Aldinger V., T-Systems 

Advanced Services on hpcPortal - Usage of MIDAS for Crash Simulation on Linux Clusters 
Sattler M., Finkel A., T-Systems 

 
Registration and contact address 

DYNAmore GmbH, Mrs. Kathleen Ryssel 
Industriestr. 2 • D-70565 Stuttgart • Germany 
Phone: +49 (0)711 - 459600 - 0      -     Fax: +49 (0)711 - 459600 - 29 
E-mail: info@dynamore.de, http://www.dynamore.de 

 
Conference web site: 

http://www.ls-dynaconferences.de 
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Special Announcements and Highlights of News Pages  
 

 
Posted on FEA Information in January - Archived on the news page 
 

January 06 Fujitsu PRIMEPOWER  
 AMD Athlon™ MP Processor for Servers 
 State Unitary Enterprise – STRELA – Distributor in Russia 
January 13 ANSYS Inc.'s AI*Solutions 
 LSTC’s LS-OPT 
 Flotrend – Distributor in Taiwan 
January 20 MSC.visualNastran 4D ™ 
 JRI Professional Engineering 
 Theme Engineering – Distributor in Korea 
January 27 SGI – “Scaling Linux to New Altitudes” 
 Oasys and Arup 
 DYNAmore – Distributor in Germany 

 
 
February Featured Publication *  -  Archived on the publication page 
 

*Shape Optimization of Crashworthiness Structures - Dave J. Eby, applied Computational Design 
Assocaties, Inc. 
 
Improving Crash Analysis Through The Estimation of Residual Strains Brought About by Forming 
Metal - William Broene, Brown Corporation 
 
Study on Optimal Design of Automotive Body Structure Crashworthiness - Hailang Wang, Shanghai Jiao 
Tong University 

 
 
Special Announcement:           Corrado Tumminelli, Numerica Srl  - Italy   

Ph +39.055.432010   www.numerica-srl.it  
c.tumminelli@numerica-srl.it 

 
2003    March 13-14:  Training on "Pedestrian Safety, design strategies and tools for the pedestrian 
safety under EEVC (European) rules".  The LS-DYNA simulation of vehicle impact on pedestrians is 
discussed, with the aim to design a cars front end in a way that decreases injury to the impacted 
pedestrian.   For details: c.tumminelli@numerica-srl.it 
  
2003     March 18:  Seminar on "VPS - Virtual Paint Shop"   Car painting and drying processes 
simulation are introduced.    From the EDC (electro deposition coating) painting, to the DIP (simulation 
of the body immersion with regard to the paint stagnation into the body cavities), to the oven drying 
process, the computer simulations deliver huge savings in time and cost.   All the major European car 
makers are starting to use this virtual approach.  Implicit code is used. 
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FEA Information Participants 
 

Headquarters Company  
Australia Leading Engineering Analysis Providers www.leapaust.com.au  
Canada Metal Forming Analysis Corp. www.mfac.com  
France Cril Technology Simulation www.criltechnology.com 
Germany DYNAmore www.dynamore.de 
Germany CAD-FEM www.cadfem.de 
India GissEta www.gisseta.com  
Italy Altair Engineering srl www.altairtorino.it 
Italy Numerica srl www.numerica-srl.it  
Japan The Japan Research Institute, Ltd www.jri.co.jp  
Japan Fujitsu Ltd. www.fujitsu.com  
Korea THEME Engineering www.lsdyna.co.kr  
Korea Korean Simulation Technologies www.kostech.co.kr  
Russia State Unitary Enterprise - STRELA www.ls-dynarussia.com 
Sweden Engineering Research AB www.erab.se  
Taiwan Flotrend Corporation www.flotrend.com 
UK OASYS, Ltd www.arup.com/dyna 
USA INTEL www.intel.com  
USA Livermore Software Technology www.lstc.com  
USA Engineering Technology Associates www.eta.com  
USA ANSYS, Inc www.ansys.com  
USA Hewlett Packard www.hp.com  
USA SGI www.sgi.com  
USA MSC.Software www.mscsoftware.com  
USA DYNAMAX www.dynamax-inc.com  
USA CEI www.ceintl.com  
USA AMD www.amd.com 
USA Dr. T. Belytschko Northwestern University 
USA Dr. D. Benson Univ. California – San Diego 
USA Dr. Bhavin V. Mehta Ohio University 
USA Dr. Taylan Altan The Ohio State U – ERC/NSM 
USA Prof. Ala Tabiei University of Cincinnati 
Russia Dr. Alexey I. Borovkov St. Petersburg State Tech. University 
Italy Prof. Gennaro Monacelli Prode – Elasis & Univ. of Napoli, Federico II 
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 EVENTS – CONFERENCES – EXPO’s 

 

 

2003  
March 18-19  Russian Automotive Conference, Moscow, Russia   

May 19-21 

 

BETECH 2003 taking place at the Hyatt Regency Dearborn hotel in Detroit, 
USA - 15th International Conference on Boundary Element Technology  

May 22 - 23 4th European LS-DYNA Conference will be held in ULM, Germany  

June 3-5  Testing Expo 2003, Stuttgart, Germany.   

June 17-20 

 

The Second M.I.T. Conference on Computational Fluid and Solid 
Mechanics, taking place at Massachusetts Institute of Technology Cambridge, 
MA.,USA   

Oct 29-31  
Testing Expo North America 2003 - located Novi Expo Center in Detroit, 
Michigan.  

Nov 12-14  CAD-FEM User Conference 2003 - Dorint Sanssouci Hotel, Berlin Potsdam.   

If you have an event you would like posted send it to mv@feainformation.com 



Zero Energy Modes in One Dimension: An
Introduction to “Hourglass” Modes

David J. Benson

January 20, 2003

Reduced integration does a lot of good things for an element: it reduces
the computational cost, it reduces shear and volume locking, and it generally
softens the element so that the predicted stress is more accurate. However,
reduced integration also makes elements too soft in the sense that modes
other than rigid body modes aren’t resisted by the element. These modes,
which were originally noticed in finite difference calculations in two dimen-
sions in the 1960s, are historically called hourglass or keystone modes because
of their shape. For other elements, the modes don’t have these shapes, and
the modes are commonly referred to as zero energy modes.

1 Mathematical Preliminaries: Vectors and

Covectors

When we are working in cartesian space, such as (x1, x2) with the basis
vectors e1 and e2, an arbitrary vector in the space, a, can be written

a = (a · e1)e1 + (a · e2)e2 = a1e1 + a2e2. (1)

Suppose, however, that two other basis vectors, ê1 and ê2, are chosen and
they aren’t perpendicular to each other and, just to make things a little more
complicated, they don’t have a unit length. Expressing a in terms of these
new basis vectors isn’t as simple as it was for e1 and e2. Our goal is to
determine the coefficients â1 and â2 so that

a = â1ê1 + â2e2. (2)

1
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The most direct approach is to solve two linear equations for the coefficients
which are generated by taking the dot product of Equation 2 with e1 and
e2, namely [

ê1 · e1 ê2 · e1

ê1 · e2 ê2 · e2

] {
â1

â2

}
=

{
a1

a2

}
. (3)

The solution is

1

det

[
ê2 · e2 −ê2 · e1

−ê1 · e2 ê1 · e1

] {
a1

a2

}
=

{
â1

â2

}
. (4)

The solution can be re-written in the form of a vector dot product if we define
the vectors Ê1 and Ê2 as

Ê1 =
1

det

{
ê2 · e2

−ê2 · e1

}
Ê2 =

1

det

{ −ê1 · e2

ê1 · e1

}
(5)

â1 = a · Ê1 â2 = a · Ê2. (6)

These special vectors are the covectors for ê1 and ê2. Some properties
are fairly obvious: the covectors of the covectors are the original set of basis
vectors, and that for a Cartesian coordinate system, the basis vectors are their
own covectors. It is, however, important to remember that basis vectors and
covectors both come in sets: the covector Ê1 is not just a function of ê1,
but also of all the other basis vectors. Change the other basis vectors, and
Ê1 will also change even if ê1 remains unchanged. The vectors and their
covectors have the property

Êiêj = δij (7)

but, in general,
ÊiÊj �= δij êiêj �= δij. (8)

To make these ideas a little more concrete, let’s consider an example in
two dimensions, with the basis vectors ê1 = {1 0}T and ê2 = {cos(θ) sin(θ)}T .
The system of equations to be solved for â1 and â2 is[

1 cos(θ)
0 sin(θ)

] {
â1

â2

}
=

{
a1

a2

}
. (9)

Solving the system gives

1

sin(θ)

[
sin(θ) − cos(θ)

0 1

] {
a1

a2

}
=

{
â1

â2

}
(10)
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Figure 1: The vectors and covectors for θ equals 30 degrees.

and the covectors are therefore (see Figure 1)

Ê1 =

{
1

− cos(θ)
sin(θ)

}
Ê2 =

{
0
1

sin(θ)

}
. (11)

The reason for introducing vectors and covectors here is B can be thought
of as being a collection of covectors corresponding to the nodal displacements
associated with the different strain modes of an element. For example, in two
dimensions ε11 = ∂u1/∂x1, and therefore a set of nodal displacements having
the form {x1, 0, x2, 0, . . . , xn, 0}, when multiplied by the first row of B will
give the result ε11 = 1. If this displacement vector is labelled b1, its covector
is B1, the first row in B. An arbitrary displacement vector for an element
could therefore be expressed as

d = (B1 · d)b1 . . . = ε11b1 . . . (12)

Since an element has more degrees of freedom than it has strains, the dis-
placement modes must be expanded to include other modes (e.g., rigid body
modes) to form a complete basis for the displacements of the nodes of the
element.

A particular type of mode that shows up in under-integrated elements is
the zero energy mode. The mathematics of vectors and covectors gives us a
language to use for discussing these zero energy modes, and the corresponding
extra rows of B required to calculate their amplitude.
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Figure 2: The shape functions for a one-dimensional quadratic element.

2 Zero Energy Modes in One Dimension

All the basic concepts associated with zero energy modes are easily demon-
strated in one dimension with a three-node quadratic element using one-point
integration. The interpolation functions and their derivatives for the three
nodes (see Figure 2) are

N1(s) =
1

2
s(s − 1) (13)

N2(s) = 1 − s2 (14)

N3(s) =
1

2
s(s + 1) (15)

∂N1

∂s
= s − 1

2
(16)

∂N2

∂s
= −2s (17)

∂N3

∂s
= s +

1

2
(18)
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The B matrix, for a general location within the element, is therefore

B(s) =
1

det(J)
[ s − 1

2
−2s s + 1

2
] (19)

J = x1(s − 1

2
) + x2(−2s) + x3(s +

1

2
) (20)

The nodal displacement vector corresponding to a uniform strain of 1
is { x1 + c x2 + c x3 + c }T , where c is any arbitrary constant, and cor-
responds to a rigid body translation of c. For convenience, we’ll call this
displacement vector b.

A second nodal displacement vector is the rigid body translation

r = { 1 1 1 }T (21)

and its corresponding covector is

R = { 1/3 1/3 1/3 }T . (22)

The product B ·r = 0, but R ·b = 1/3(x1 +x2 +x3)+ c. To make R ·b = 0,
we set c = −1/3(x1 + x2 + x3). This is strictly for convenience since only
linear independence is required.

Since the element has three nodes, the vector space of its nodal dis-
placements has a dimension of three and is spanned by any three linearly
independent vectors. This implies that there is a third vector that is linearly
independent of b and bfr that can be used to complete the space. Further-
more, there is a covector corresponding to this third vector which completes
the covector space for the element.

One choice for the third displacement vector becomes apparent when the
element is integrated using one-point integration, where the location and
weight are s = 0 and w = 2, respectively. The strain displacement matrix B
simplifies to

B =
1

L
[ −1 0 1 ]. (23)

L = x3 − x1 (24)

The strain in the element is therefore not a function of the displacement at
node 2, and if nodes 1 and 3 don’t move, the element won’t generate any
stress regardless of the displacement of node 2. In a similar manner, since
the force vector is BT σ(x3 − x1), node 2 won’t experience any force due to
the stress in the element.
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By inspection, this peculiar mode, which we’ll label h, is

h = { 0 1 0 }T (25)

and it is orthogonal to B(0), i.e., B(0) ·h = 0. The element stiffness matrix
for one-point integration is

K = ELB ⊗ B, (26)

and therefore the strain energy associated with this mode is

U =
1

2
hT Kh = 0. (27)

The mode h is therefore a zero energy mode.
If a calculation is performed using this element, numerical roundoff er-

rors in explicit calculations will possible lead to the motions of the central
nodes of the elements being the ones with the largest amplitudes in the cal-
culation. Since these zero energy modes are orthogonal to the stress and
strain in the elements, they don’t affect the accuracy of the remainder of the
solution. In implicit quasi-static calculations, the rows and columns associ-
ated with the middle nodes are zero, and the stiffness matrix is singular. In
multi-dimensional calculations, the zero energy modes may cause negative
Jacobians in the elements, which ends the analysis. A means of reducing the
impact of the zero energy modes on the calculation is therefore desirable.

Hourglass modes may be controlled by adding either stiffness or viscosity
terms to the equations. In large deformation calculations, a viscous term
is usually preferred to avoid building up large elastic forces in the system.
Stiffness terms are used in implicit quasi-static calculations to eliminate the
singularity of the stiffness matrix. For explicit calculations with small to
moderate deformations, and long time periods, a stiffness form of hourglass
control is often preferred to prevent hourglass modes from slowly building
up in the solution. Combinations of viscous and stiffness hourglass control
are also sometimes used, but usually one form of the control is adequate for
most calculations.

The simplest formulation to control the zero energy modes, which was
used originally in the finite difference community, is to simply add a viscous
term to the element force calculations,

F = BT σL + cLh ⊗ hu̇ (28)
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where c is a small damping coefficient. In a similar manner, the finite element
community added a term to the stiffness matrix,

K = ELB ⊗ B + eLh ⊗ h (29)

where e is a small elastic constant.
There is, however, one unfortunate problem with this simple formulation,

and that is the zero energy mode h isn’t orthogonal to the rigid body mode
r. The zero energy mode control in Equations 28 and 29 will resist rigid
body motion, a highly undesirable, nonphysical response. The appropriate
vector to use is the covector H . Just as B is orthogonal to r and h, and R
is orthogonal to b and h, H needs to be orthogonal to b and r. The required
covector is generated using Graham-Schmidt orthogonalization, a procedure
for making vectors orthogonal to each other, with h as the initial “guess” for
H ,

H = h − (h · R) r (30)

= [ −1/3 2/3 −1/3 ]T . (31)

Substituting H for h in Equations 28 and 29 gives two formulations for con-
trolling the hourglass mode without opposing rigid body motion or altering
the constant strain response,

F = −BT σL − cLH ⊗ Hu̇ (32)

K = ELB ⊗ B + eLH ⊗ H (33)

Summarizing our results so far, the quadratic element has three basic
displacement modes:

1. The rigid body translation mode r = { 1 1 1 }T .

2. The strain mode b = { −L/2 0 L/2 }T . This mode has been nor-
malized so that B · b = 1.

3. The zero energy mode h = { −1/2 1 −1/2 }T , which has been nor-
malized so that H ·h = 1 and it has been orthogonalized with respect
to r and b.

Since the element only has three degrees of freedom, and the three modes
are linearly dependent, these modes span the entire space of possible defor-
mations for the element.
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Corresponding to the three displacement modes are the three covectors
that detect the amplitudes of the displacement modes in an arbitrary dis-
placement vector:

1. R = [ 1/3 1/3 1/3 ] is the rigid body covector.

2. B = [ −1/L 0 1/L ] is the familiar strain-displacement matrix.

3. H = [ −1/3 2/3 −1/3 ].

Just as the three displacement modes span the element’s vector space,
the covectors span its covector space. For example, the general form for the
strain-displacement matrix, B(s) can be expressed in terms of the covectors
as

B(s) =
L

2det(J)
B − 3s

det(J)
H . (34)

The element stiffness matrix, for uniformly spaced nodes, with exact integra-
tion is

K =

∫ +1

−1

EBT (s)B(s)det(J)ds (35)

=
E

L


 7/3 −8/3 1/3

−8/3 16/3 −8/3
1/3 −8/3 7/3


 (36)

Substituting Equation 34 into Equation 35 results in three terms,

K =

∫ +1

−1

E
L2

4det2(J)
BT B det(J)ds (37)

−
∫ +1

−1

E
3Ls

det2(J)
(BT H + HT B) det(J)ds (38)

+

∫ +1

−1

E
9s2

det2(J)
HT H det(J)ds. (39)

The first integral is the stiffness matrix that is obtained using 1-point integra-
tion. The second term, which is zero because

∫
sds = 0, doesn’t contribute

to either the exact stiffness or numerically integrated stiffness matrices. The
third term is the difference between the exactly integrated stiffness matrix
and the one-point integration. Choosing

eL =

∫ +1

−1

E
9s2

det(J)
ds =

12E

L
(40)
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for Equation 33 gives the exact stiffness matrix (for equally spaced nodes)
with one-point integration. This approach is also applicable to elements in
two and three dimensions.

3 Implementation in an Explicit Code

The implementation of the viscous and stiffness forms of the zero energy
mode control in an explicit finite element code are very similar. Calculating
the matrix H ⊗ H requires n2 floating point multiplies for an element with
n degrees of freedom. The cost of a matrix-vector multiply H ⊗ Hu is also
high, requiring 2n2 −n floating point operations. The implementation of the
zero energy mode control is therefore structured to avoid matrix operations.

For the current discussion, we’ll assume that both viscous and stiffness
control is used and that it has the form

F = −eH ⊗ Hu − cH ⊗ Hu̇. (41)

The original implementations assumed that e and c are constants, but more
recent formulations have made them time dependent functions of the material
model, which makes a rate form for the stiffness contribution necessary. The
rate form is also attractive even if e is constant because many explicit codes
don’t routinely store the total displacement vector, u. A generalized force,
fh, is stored for each element,

fh(t) =

∫ t

0

eH · udt. (42)

The resulting implementation evaluates, in sequence,

α̇ = H · u̇ (43)

fn+1
h = fn

h + �teα̇ (44)

F = (−fn+1
h − cα̇)H. (45)

The dot product for calculating α̇ requires 2n − 1 floating point operations,
the update of fn+1

h requires 3, and the final evaluation of the force requires
n + 2, for a total of 3n + 4 operations. This implementation is therefore
approximately n times faster than evaluating H ⊗ H and performing the
matrix multiply. For an element with 3 degrees of freedom, this cost ratio
isn’t terribly important, but for an 8-node brick element, which has 24 degrees
of freedom, the difference in cost is substantial.
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