Full-Field Material Calibration Using LS-OPT®

<u>Nielen Stander</u>, Anirban Basudhar, Imtiaz Gandikota, Suri Bala Sophie Du Bois, Denis Kirpicev H Keshtkar, A Patil, A Sheshadri, P Du Bois (Fiat Chrysler Automobiles)

German LS-DYNA Forum Bamberg, Germany October 16, 2018

Parameter Identification: Overview

New curve matching algorithm

Dynamic Time Warping

• Digital Image Correlation

Nearest Neighbor Cluster: Reduce resources

• Post-processing

Automated Contour History display (LS-PrePost) using Similarity Measure

Material Calibration: Introduction

strain///

Dr. H. Ghassemi-Armaki (Brown U.) Prof. F. Pourboghrat (OSU)

Calibration: Computational challenges

Experimental and computational results can be difficult to compare

Noise

Failure model: GISSMO element erosion a discrete process

Hysteresis

Material 125 — Loading/Unloading (5 cases)

Partial Matching

Failure model: GISSMO — postfailure oscillation of coupon

Addressing noise: Dynamic Time Warping

- DTW calculates the distance between two data sets, which may vary in time, via its corresponding warping path.
- This path is the result of the minimum accumulated distance which is necessary to traverse all points in the curves.
- The matching is end-to-end.
- While the Euclidean distance measure is a strict oneto-one mapping, DTW also allows one-to-many mappings.
- Mathematically, optimize the path:

$$DTW(P,Q) = \frac{1}{l} \min_{W} \left\{ \sum_{i=1}^{l} \delta(w_i) \right\}$$

₃ x-axis

0

Sophie du Bois, Denis Kirpicev 2018

Dynamic Time Warping: DTW mapping

Simulated GISSMO model: force-displacement curves for tensile test

Sophie du Bois, Denis Kirpicev

Dynamic Time Warping: Partial curves

Partial curve pairs can distort the DTW result

- In DTW, red connectors are summed
- Curve length difference artificially distorts mismatch
- Truncation required

Example: GISSMO model

The GISSMO failure model requires special treatment for curve matching

- Parameters: 7, Material Model: GISSMO
 - Uses discrete (element-by-element) erosion
- Curve Matching
 - <u>Dynamic Time Warping (DTW)</u>
 - Does not address partial curves ⇒ <u>Truncate Force history</u> at failure
- Optimization
 - SRSM (fast local optimizer)

Shear: single case calibration history

Calibration: GISSMO model

In industry, the calibration of the GISSMO model typically involves multiple cases

Digital Image Correlation

Digital Image Correlation (DIC)

Align and map optical data to the Finite Element model

Digital Image Correlation: LS-OPT technologies (1)

• *Alignment* in 3D of test to FE model. Least Squares solution:

 $\min_{\boldsymbol{T},\hat{s}} \|\hat{s}\boldsymbol{X}_1\boldsymbol{T} - \boldsymbol{X}_2\|$

- X_1 :Test pts (subset), X_2 : FE model pts, T: transform, \hat{s} : Isotropic scaling. Typically 3 or 4 points
- Alternative: LS-PrePost[®] to translate, rotate and scale test points.

Align Test points

- *Map:* Test \rightarrow FE mesh:
 - Exact Nearest Neighbor (bin tree) search and element interpolation $(10^7 \rightarrow 10^7 \text{ pts})$. (Practice: ~ 10^6)

• *Optimization: Minimize Similarity Measure:*

Validation of a Synthetic Problem

Distance vs. parameters

Different similarity measures compared

Example 1: DIC Validation: Punch example

Calibrate GISSMO material properties using strains/transverse displacement

Courtesy: FCA

Example 1: DIC Validation: Punch example

The calibration was done using a Force-Displacement similarity match (GISSMO)

Digital Image Correlation: Nearest Neighbor Cluster

- Accuracy and cost
- Nearest Neighbor Clustering
 - Pre-processing feature
 - Reduce resources for large point set $(\sim 10^6)$
 - Storage space
 - CPU time: mapping is done at each time step (vanishing nodes/points)
 - Nodal 1-to-1 map
 - Can also apply a proximity tolerance for removing outlier points
- Algorithm (t = 0)
 - Nearest node to each point \rightarrow reduced node set.
 - Prune reduced node set \rightarrow nearest points
 - 1-to-1 map

Digital Image Correlation: Nearest Neighbor Cluster

- Accuracy and cost
- Nearest Neighbor Clustering
 - Pre-processing feature
 - Reduce resources for large point set $(\sim 10^6)$
 - Storage space
 - CPU time: mapping is done at each time step (vanishing nodes/points)
 - Nodal 1-to-1 map
 - Can also apply a proximity tolerance for removing outlier points
- Algorithm (t = 0)
 - Nearest node to each point \rightarrow reduced node set.
 - Prune reduced node set \rightarrow nearest points
 - 1-to-1 map

Enlarged

Example 2: Tensile test

The contour comparison uses *Dynamic Time Warping*: $3.8 imes 10^5$ DIC points

LS-OPT *DIC* calibration feature summary (v6.0)

- DIC Interfaces:
 - gom/ARAMIS
 - v6 CSV
 - v7 XML
 - Fixed Format (LS-PrePost)
 - Free Format (LS-OPT/GenEx parser)
- LS-DYNA interface
 - Multi-point histories (d3plot)
 - Entities

•

- Nodal
- Shell
- Solid
- Exact nearest neighbor point mapping (~ 10^7 pts). Test pt \rightarrow FE pt
- Curve similarity methods
 - Euclidean, Fréchet,
 DTW, PCM

- Filtering
 - Online filtering (SAE, Ave)
- GUI
 - Test pre-view
 - Test alignment

- Strain fringe plot (LS-PrePost)
 - Simulation
 - Experiment
 - Error

Outlook

• General feature: Improved pre-viewing/pre-processing of experimental data.

Interactive filtering and truncation of test results

Partial DTW-based curve mapping

DTW-LCS method

• Further speedup

Multiple similarity responses typically have the same mapping