15th German LS-DYNA Forum

LS-TaSC 4: Designing for the combination of impact, statics, and NVH

<u>Katharina Witowski</u>, DYNAmore GmbH Willem Roux, Livermore Software Technology Corporation Guilian Yi , Livermore Software Technology Corporation Imtiaz Gandikota , Livermore Software Technology Corporation Bamberg, 16.10.2018

Outline

LS-TaSC 4 focuses on the design of huge models for a combination of **statics**, **NVH**, **and impact**

- Multidisciplinary methodology
 - Projected subgradient method
 - Multidisciplinary optimization
 - Workflow improvements
 - Visualization
- Examples
- Conclusions

Projected Subgradient Method - Motivation

- LS-TaSC 3.2 method: Optimality Criteria for Dynamic Problems
- Objective uniform distribution of Internal Energy Density
 - ightarrow static and impact load cases
 - \rightarrow not suitable for NVH load cases
 - → we need a method that considers frequencies (maximization of fundamental frequency)
 - \rightarrow Projected subgradient method

Implementation of the Projected Subgradient Method in LS-TaSC™ Roux, W., Yi, G., Gandikota, I. 15th International LS-DYNA User's Conference

Projected Subgradient Method

- The projected subgradient method is related to the steepest descent method
 - This family of methods related to steepest descent is popular again in general, because of the *huge data sets*. Our implementation of the projected subgradient is unique to both to us and topology optimization, again because of *the huge data sets*.

Topology optimization requires that the mass stay constant over the iterations. The design vector is therefore mapped onto the plane of constant mass.

Multidisciplinary Optimization

The descent vector is sourced from the various discipline descent vectors
Complete a second state of the second state of

Combine normalized vectors using weighting:

$$s = \sum_{lc=1}^{m} w_{lc} \frac{s_{lc}}{\|s_{lc}\|}$$

- The weights are provided by the engineer, or computed from information provided by the engineer
 - Solution depends on weights

New Visualization Features

NVH load cases: Eigen Modes

New Visualization Features

 MDO: Contributing Case

- 0 = none
- 1 = LC 1
- 2 = LC 2

. . .

■ 3 = LC 1+2

Workflow improvements

- Different element deletion for implicit vs explicit cases
 - Option of deletion for explicit but not implicit
 - Automatic deletion of loose regions/elements
- Different materials between cases
 - Allow different materials for each case, such that the one case is linear, the other nonlinear, or heat transfer. This allows for example one case to be at a different temperature than the other.

				od 🛛	
Co	mpletion	Multipoint	Various		
	Design Al	gorithm			Projected subgradient
	Topology variables move limit (OC alg)				0.1
	Desired mass flow (F_G aig)				Default
	Delete elements				No
	Delete unreferenced nodes				Default
	Unconnected regions				No
	Store filters in memory			All cases	
	Use d3part database				Explicit only
	Face direction tolerance				0.258
	Check *database requests				True
	Normalize Case Data (OC alg) Dump casting faces Dump LS-Dyna input as read				False
					False
					False
:	Solid/Void	strategy			SIMP
	Invert Soli	d/Void use			False
					Cancel OK

Examples

The benchmark problems demonstrate the new multidisciplinary solver:

- Huge models
- NVH benchmark problems
- Multi-disciplinary design optimization considering NVH and static
- Impact, static, and NVH

Performance relative to previous method

Mathematical programming techniques allow many power-ups

Projected subgradient (new):

- 30 FEA calls
- 0.1 step size

Optimality Criteria (old):

- 30 FEA calls
- 0.1 step size
- Needs about 50 iterations to match the new algorithm

Huge model performance

- Impact load case
 - 13.1 million elements
- Mass fraction: 0.25
- Projected subgradient method
 - 30 Iterations

Isosurface plot of optimal design

Huge model performance

Computational cost for huge problem

HUGE MODEL PERFORMANCE					
Model size	13.1 million elements				
Physics	Explicit impact analysis				
LS-DYNA analysis time for one iteration	600 CPU hours (5 hours using 120 CPUs on a remote cluster)				
Part design time – first iteration	25 CPU minutes (1 CPU)				
Part design time – all other iterations	2 CPU minutes (1 CPU)				
Peak memory use by LS-TaSC	15 GB				

NVH Benchmarks

- Maximization of Fundamental Frequency
- Mass fraction: 0.5
- 3 different boundary conditions

Symmetric boundary conditions → Symmetric results

NVH Benchmarks

- Multi-disciplinary optimization, 2 load cases
 - fundamental frequency
 - linear static load
- Mass fraction: 0.5
- 3 different boundary conditions

n, 2 load cases
$$\downarrow F = 10$$

Impact, statics, and NVH

Multi-disciplinary optimization, 3 load cases

- Equal weights
- Mass fraction: 0.1

Impact, statics, and NVH

- Results (80 Iterations)
 - Optimal geometry

Impact, statics, and NVH

New plot type shows which load case contributes the material used in the part.

Conclusions

The Projected subgradient method provides option to run MDO

- combines the disparate crash and NVH design disciplines
- It ran 10 000 000+ solid element crash models out of the gate
- The Beta version of LS-TaSC version 4 is available

More Information on the LSTC Product Suite

- Livermore Software Technology Corp. (LSTC) www.lstc.com
- LS-DYNA
 - Support / Tutorials / Examples / FAQ www.dynasupport.com
 - More Examples www.dynaexamples.com
 - Conference Papers www.dynalook.com
 - European Master Distributor www.dynamore.de
- LS-PrePost
 - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT/LS-TaSC
 - Support / Tutorials / Examples www.lsoptsupport.com

[THUMS[®] www.dynamore.de]

Thank you for your attention!

