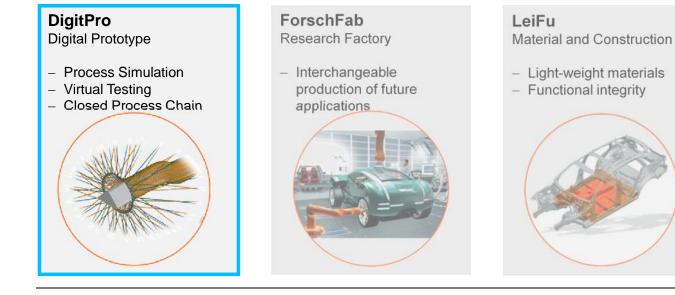
	GEFÖHDERT VOM	SETREUT VOM	FORSCHUNGS
*	Bundesministerium für Bildung und Forschung	PTKA Projektträger Karlsruhe	
	chororsenang		öffentlich-private Partnerschaft für Innovationen
		Karlsruher Institut für Technologie	

ARENA2036 DigitPro

P. Böhler, J. Dittmann (Univ. Stuttgart), H. Finckh, F. Fritz (DITF), A. Haufe, C. Liebold (DYNAmore GmbH), M. Holzapfel, M. Vinot (DLR)


Strategic partnership for new innovations and research on a new level

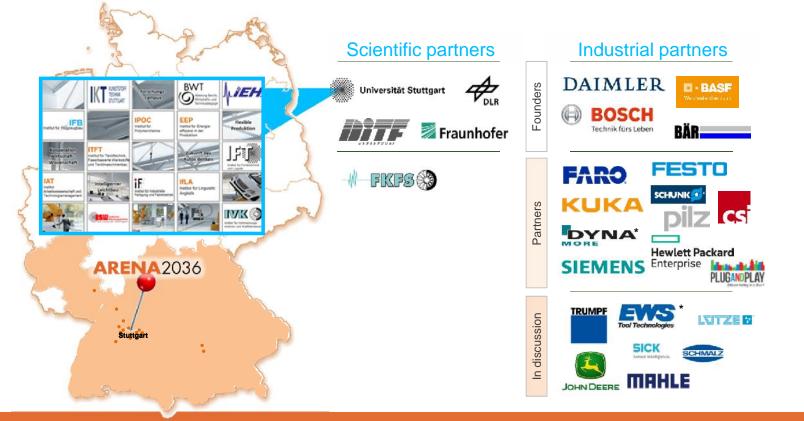
ARENA2036 – The Research Campus

ARENA2036

<u>Active Research Environment for the Next generation of Automobiles</u>

- Developments for Industrial 4.0 and Digitalization
- 3 starting technical research projects + 1 overlapping research area

Khoch3 Creativity – Cooperation – Competence Carrier


Overview on the starting projects

ARENA2036 Research Campus @ Vaihingen

ARENA2036 – The Research Campus

Active Research Environment for the Next generation of Automobiles

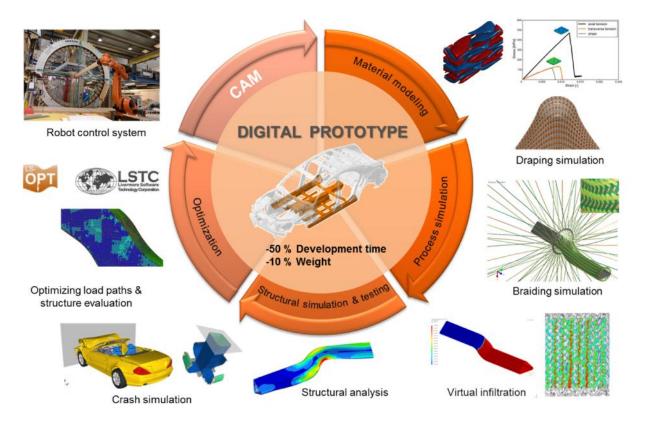
ARENA2036 Research Campus @ Vaihingen

19 industrial and scientific partners

DigitPro – **Digit**al **Pro**totype

ARENA2036

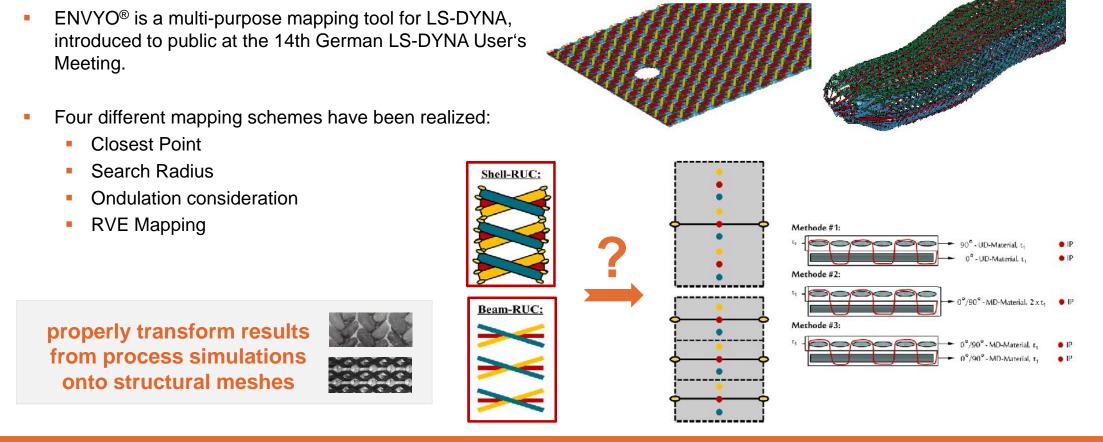
- closed simulation process chain
- from preliminary design to the final component
- micro, meso and macro modeling
- different simulation software tools
- HDF5 Format


_

- digital fingerprint
- braided components _

Open-Reed-Weaving

components -50% development time mind. -10% weight

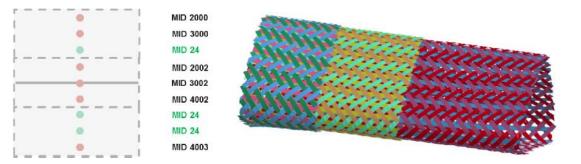


Defined targets for the starting phase

DigitPro – <u>Digit</u>al <u>Pro</u>totyp

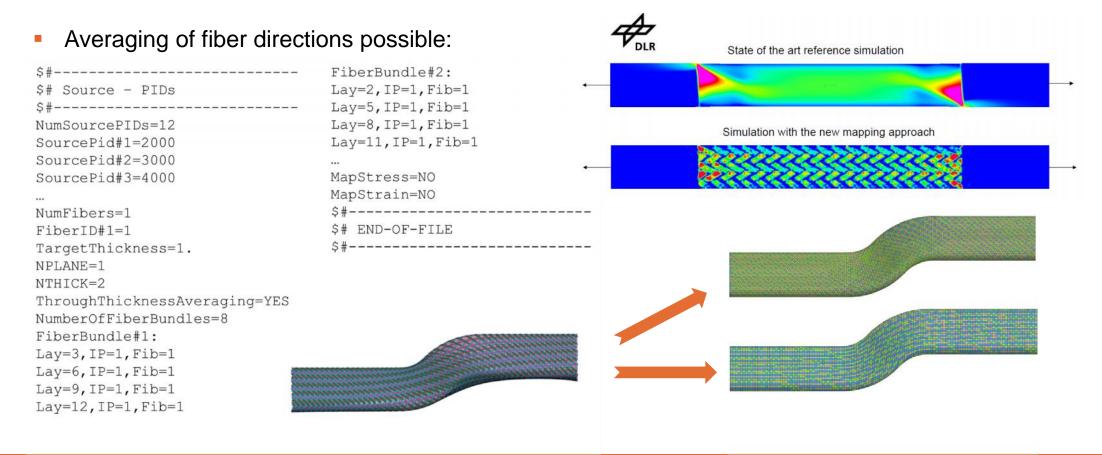
ARENA2036

Development of Mapping Routines for Braided and Weaving Structures


ARENA2036

- Closest Point
 - All fibers defined by the user are considered
 - Equivalent thickness distribution based on a given user input
- Search Radius
 - A search radius will be considered
 - If a specific fiber ID cannot be found within a certain vicinity of an element, a resin material ID will be assigned instead
 - Equivalent thickness distribution based on a given user input

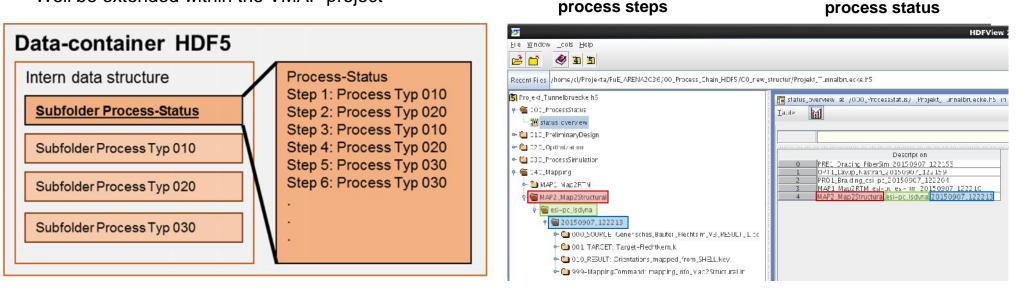
properly transform results from process simulations onto structural meshes


- Ondulation consideration
 - Ordering of the fiber assignment in target mesh not based on user input but on distance to the target element
 - Thickness is considered based on the offset of found elements
- RVE Mapping
 - RVEs are detected within a search radius
 - Material cards from a database will be assigned

Explanation of the different routines

DigitPro – <u>Digit</u>al <u>Pro</u>totyp

ARENA2036


Explanation of the different routines

DigitPro – <u>Digit</u>al <u>Pro</u>totyp

ARENA2036

8

- Link to an HDF5 data storage container has been realized
 - Binary storage format
 - Solver independent
 - Well be extended within the VMAP project

HDF5 data storage container

DigitPro – <u>Digit</u>al <u>Pro</u>totyp

ARENA2036

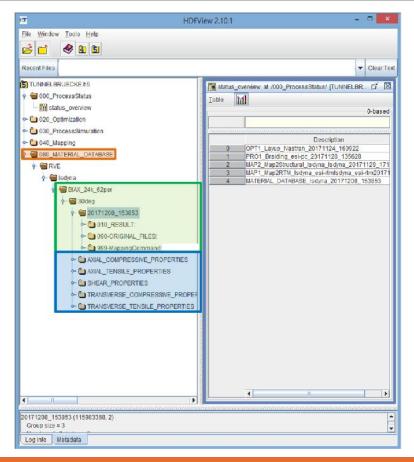
Workflow

• One user has to define an initial data structure:

\$#	
\$# Main mapping definition	
\$ #	
ENVYO=HDF5-DEFINITION	
\$#	
\$# In- and output meshes	
\$#	
HDF5-Structure=SimStages.txt	
HDF5-File Target=MyHDF5-File.no	
\$ #	
\$# END-OF-FILE	
\$#	

020_OPTIMIZATION 030_PROCESS_SIMULATION 001_BRAIDING 002_INFILTRATION 040_MAPPING 001_Map2Structural 002_Map2RTM 050_STRUCTURAL 080_MATERIAL_DATABASE 090_CAD

HDF5 exchange workflow as realized in ARENA2036


DigitPro – <u>Digit</u>al <u>Pro</u>totyp

ARENA2036

10

- Workflow
 - One user has to define an initial data structure
 - Further data can be assigned to the respective subfolders

\$# Main mapping definition \$#-----ENVYO=RVE-POSTPROCESSING \$#-----In- and output meshes \$#-----PushToHDF5DataBase=YES HDF5-File Target=MyHDF5-File.h5 WriteOriginalFiles=YES WriteResultFiles=YES RVE INFO=braid data.txt \$#-----\$# ARENA2036 - File Status \$#-----DevelopmentStage=080 MATERIAL_DATABASE \$#-----\$# END-OF-FILE \$#-----

HDF5 exchange workflow as realized in ARENA2036

DigitPro – <u>Digit</u>al <u>Pro</u>totyp

11

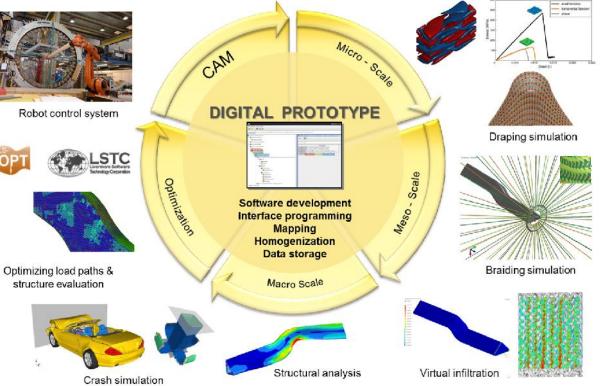
- Workflow
 - One user has to define an initial data structure
 - Further data can be assigned to the respective subfolders
 - The next user can read the assigned data

🛗 status_	overview at /000_ProcessStatus/ [Projekt_Tunnelbruecke.h5
Table	M
	Description
0	PRE1_Draping_FiberSim_20150907_122153
1	
2	OPT1_Layup_Nastran_20150907_122159
2	

\$#					
\$# Main mapping definition					
\$#					
ENVYO=HDF5-Output					
\$#					
\$# In- and output meshes					
\$#					
HDF5-File SOURCE=MyHDF5-File.h5					
NumStages=1					
ProcessStages=LAST					
Files=ALL					
\$#					
\$# END-OF-FILE					
\$#					

HDF5 exchange workflow as realized in ARENA2036

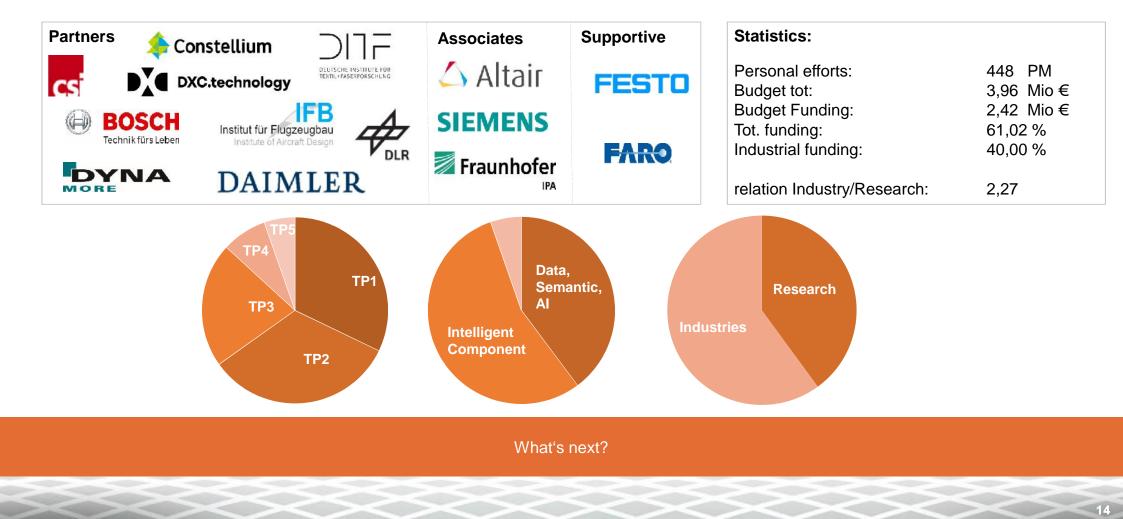
DigitPro – <u>Digit</u>al <u>Pro</u>totype


ARENA2036

13

- Within the ARENA2036 research campus, a multi-scale, integrative simulation environment is being established, allowing to consider multiple manufacturing processes
- The developed mapping, homogenization and data exchange platform is solver independent
- Optimization and CAM interfaces are under investigation

DigitPro – the Digital Prototype: closing the simulatoin process chain

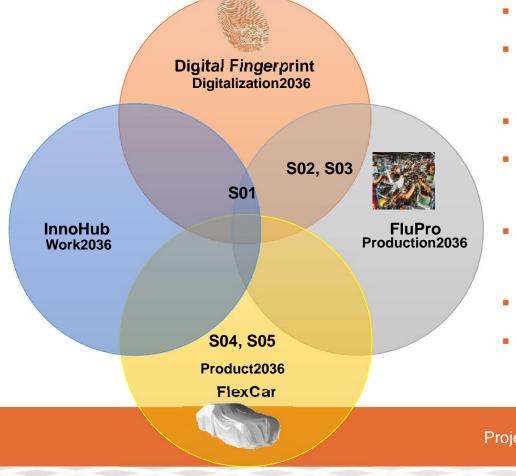


The Digital Prototype as Part of ENVYO® - Development History and Applications within the ARENA2036 Environment

DigitPro – <u>Digit</u>aler <u>Pro</u>totyp

ARENA2036

Digital Fingerprint - Overview



DigitPro – <u>Digit</u>aler <u>Pro</u>totyp

ARENA2036

15

- Connection of all steps along the process chain of industrial 4.0
- Generation of a common data platform for all data arising along the components life-time
- Automated data flow between the processes
- Intelligent component and coupling to interpretation tools (e.g. FE analysis)
- Connection to processing tools (CAM) and highly flexible, automated processes
- Component specific data storage
- Component evoluation using stored and generated data

Project interaction

ARENA2036

16