Current LS-DYNA<sup>®</sup> Developments in Thermal Radiation

Gunther Blankenhorn, Roger Grimes, Francois-Henry Rouet (LSTC)



Bamberg, Germany, March 16, 2018

# Outline

- Introduction
  - Motivation
  - View Factor
- \*BOUNDARY\_RADIATION\_...\_VF\_...
  - Current feature set
- Enhancements
  - Objective
  - Algorithm
  - Scalability
  - Visualization
- \*BOUNDARY\_RADIATION\_ENCLOSURE
  - Keyword format
- Summary



# **Motivation**

#### Heat transfer

- Thermal Conduction heat transfer inside a body
- Thermal Convection heat transfer by the movement of a fluid
- Thermal Radiation heat transfer from a surface to another surface via electromagnetic radiation

## **Examples thermal radiation in an enclosure**

- Temperature distribution in an engine compartment
- Temperature distribution muffler system
- Paint and adhesive curing in oven



## **View Factor**

- View factors are essential to solve the thermal radiation problem
- A view factor is the relation of the diffuse energy leaving surface dA<sub>1</sub> and reaches surface dA<sub>2</sub> and the total energy leaving surface A<sub>1</sub>.

• 
$$F_{1\to 2} = \frac{1}{A_1} \int_{A_1} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi s^2} dA_2 dA_1$$



#### Source: Wikipedia



# **Current Feature Set**

LS-DYNA provides a feature to calculate the effects of thermal radiation via the keyword \*BOUNDARY\_RADIATION\_...\_VF\_...

# Usage:

- Define all surfaces which emit heat
- Define emissivity of the surface ( can be defined temperature dependent )
- Calculate the view factors or read them from an ASCII file
- View factor calculation can be done in LS-DYNA SMP version (shared memory version) and LS-DYNA MPP version (massively parallel processing)
- Solving for radiosity can only be done in LS-DYNA SMP version



# **Current Feature Set**

# **Characteristics** \*BOUNDARY\_RADIATION\_...\_VF\_...

- Overall memory and cpu time consuming
- Main contributor to memory and cpu time is the calculation of the view factor matrix
- View factors are calculated for each segment interacting with all other segments; the memory quadratically with number of segments
- Practical for moderate size problems
- Difficulties in combining with other LS-DYNA features which require LS-DYNA MPP or HYBRID versions (HYBRID is a combination of MPP and SMP)



# **Objective**

- Implementation of a new solver to solve for radiosity
- Available in LS-DYNA MPP or HYBRD versions to couple with other LS-DYNA features, namely the fluid solver for large problems
- Needs to scale in memory and cpu time
- Visualization of the view factors in LS-PrePost



7

# Algorithm

• Solve 
$$\left[\delta_{ij} - \frac{(1-\varepsilon_i)}{A_i\varepsilon_i}F_{ij}\right] \cdot B = \sigma T^4$$
 for Radiosity  $B$ 

 $\delta_{ij}$ ... Kronecker delta  $A_i$ ... area of segment i  $\varepsilon_i$ ... emissivity of segment i  $F_{ij}$ ... View factor matrix  $\sigma$  ... Stefan–Boltzmann constant T ... temperature

- Conjugate gradient method is used to solve the above equation (also used to smooth the view factor matrix if requested).
- Add possibility to choose different solvers



# Scalability

Test case model

- Cube in cube
- ~ 49k segments

Run environment

- Intel<sup>®</sup> Xeon<sup>®</sup> CPU E5645 @ 2.40GHz
- Infiniband Interconnect





**Scalability** 

# Wall Clock Time



time [sec]









# Thermal solver - memory per rank

Remark: memory does not include BR solver and view factor calculation overhead



# Enhancements – Proof of Concept

# Visualization

- Example: test case ellipsoid in ellipsoid contains 16713 segments, view factor matrix has 16713<sup>2</sup> components (~ 280 M)
- Isda format



#### Ellipsoid in Ellipsoid model



# **Keyword Format**

#### Enclosure and view factor options

| Enclosure ID                                     | ) and Name | 9 |                                             |   |   |      |   |   |  |  |  |
|--------------------------------------------------|------------|---|---------------------------------------------|---|---|------|---|---|--|--|--|
| Card 1                                           | 1          | 2 | 3                                           | 4 | 5 | 6    | 7 | 8 |  |  |  |
| Variable                                         | BRENCID    |   | ENCNAME                                     |   |   |      |   |   |  |  |  |
| BRENVID Boundary radiation ID for this enclosure |            |   |                                             |   |   | sure |   |   |  |  |  |
|                                                  | ENCNAME    |   | Name of enclosure, used for output purposes |   |   |      |   |   |  |  |  |
|                                                  |            |   |                                             |   |   |      |   |   |  |  |  |

| View factor | options |                                         |         |                                                                       |   |   |   |   |  |  |  |
|-------------|---------|-----------------------------------------|---------|-----------------------------------------------------------------------|---|---|---|---|--|--|--|
| Card 2      | 1       | 2                                       | 3       | 4                                                                     | 5 | 6 | 7 | 8 |  |  |  |
| Variable    | CALOPT  | OUTOPT                                  | CONOPT  | INCR                                                                  |   |   |   |   |  |  |  |
|             | CALOPT  | CALOPT Calculation option: View factors |         |                                                                       |   |   |   |   |  |  |  |
|             | OOPT    | Output option: view factor file format  |         |                                                                       |   |   |   |   |  |  |  |
|             | CONOPT  |                                         | Control | Control option: calculate view factors matrix and preform thermal ana |   |   |   |   |  |  |  |
|             | INCR    |                                         | Time in | Time increment, recalculating the view factor matrix.                 |   |   |   |   |  |  |  |

| View factor o | output file n | ame |                |                |   |   |   |   |
|---------------|---------------|-----|----------------|----------------|---|---|---|---|
| Card 3        | 1             | 2   | 3              | 4              | 5 | 6 | 7 | 8 |
| Variable      | FILENAME      |     |                |                |   |   |   |   |
|               | FILENAME      | Fi  | le name for th | ne view factor |   |   |   |   |



# **Keyword Format**

#### Smoothing and radiosity solver options

| View factor matrix smoothing |        |                                                                 |                                                                 |        |        |   |   |   |  |  |
|------------------------------|--------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------|--------|---|---|---|--|--|
| Card 4                       | 1      | 2                                                               | 3                                                               | 4      | 5      | 6 | 7 | 8 |  |  |
| Variable                     | SMFLAG | SMSTYP                                                          | SMMAXI                                                          | SMABST | SMRELT |   |   |   |  |  |
|                              | SMFLAG | View factor matrix smoothing flag                               |                                                                 |        |        |   |   |   |  |  |
|                              | SMSTYP | Vie                                                             | View factor smoothing solver                                    |        |        |   |   |   |  |  |
|                              | SMMAXI | Ma                                                              | Maximum number of iterations for view factor matrix smoothing   |        |        |   |   |   |  |  |
|                              | SMABST | Ab                                                              | Absolute convergence tolerance for view factor matrix smoothing |        |        |   |   |   |  |  |
|                              | SMRELT | Relative convergence tolerance for view factor matrix smoothing |                                                                 |        |        |   |   |   |  |  |

| <b>Radiosity so</b> | lver options                                             | 3                                    |                                                            |        |        |       |   |   |  |  |  |
|---------------------|----------------------------------------------------------|--------------------------------------|------------------------------------------------------------|--------|--------|-------|---|---|--|--|--|
| Card 5              | 1                                                        | 2                                    | 3                                                          | 4      | 5      | 6     | 7 | 8 |  |  |  |
| Variable            | STYPE                                                    | SLMAXI                               | SLABST                                                     | SLRELT | SLMLEV | SLMDB |   |   |  |  |  |
|                     | STYPE                                                    | S                                    | olver type                                                 |        |        |       |   |   |  |  |  |
|                     | SLMAXI Maximum number of iterations for radiosity solver |                                      |                                                            |        |        |       |   |   |  |  |  |
|                     | SLABST                                                   | A                                    | Absolute convergence tolerance for radiosity solver        |        |        |       |   |   |  |  |  |
|                     | SLRELT                                                   | R                                    | Relative convergence tolerance for radiosity solver        |        |        |       |   |   |  |  |  |
|                     | SLMSGL                                                   | LMSGL Radiosity Solver message level |                                                            |        |        |       |   |   |  |  |  |
|                     | SLMDB                                                    | R                                    | Radiosity Solver matrix debug, check positive definiteness |        |        |       |   |   |  |  |  |



# **Keyword Format**

#### Segment set definitions (repeating cards)

| Segment set |      |   |   |   |   |   |   |   |
|-------------|------|---|---|---|---|---|---|---|
| Card 6      | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Variable    | SSID |   |   |   |   |   |   |   |

**SSID** SSID specifies the ID for a set of segments that comprise a portion of, or possibly, the entire enclosure. See \*SET\_SEGMENT.

| Segment set | characterist  | ics                              |                                                                                                                                         |       |   |   |   |   |  |  |
|-------------|---------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|---|---|---|---|--|--|
| Card 7      | 1             | 2                                | 3                                                                                                                                       | 4     | 5 | 6 | 7 | 8 |  |  |
| Variable    | NINT          | BLOCK                            | SSLCID                                                                                                                                  | SSLCM |   |   |   |   |  |  |
|             | NINT<br>BLOCK | Number<br>Flag indi<br>surfaces. | Number of integration points for view factor calculation:<br>Flag indicating if this surface blocks the view between any othe surfaces. |       |   |   |   |   |  |  |
|             | SSLCID        | Load curv                        | Load curve ID for surface emissivity (see *DEFINE_CURVE)                                                                                |       |   |   |   |   |  |  |
|             | SSLCM         | Curve mu                         | Curve multiplier for surface emissivity; see *DEFINE_CURVE.                                                                             |       |   |   |   |   |  |  |



# Summary

- Current state of the development in thermal radiation
- Enhancements scale memory and cpu time wise
- A new binary output format for the view factor was implemented. This binary format can be read in by LS-PrePost<sup>®</sup> to visualize the view factors
- New keyword format is introduced
- Beta version should be available 11/2018

Acknowledgments: Jason Wang, Brian Wainscott and Lee Bindeman



# Thank you for your attention