

Faculty of Mechanical Science and Engineering Chair of Computational and Experimental Solid Mechanics

Jean-Paul Ziegs

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure

15th German LS-DYNA Forum 2018 // Bamberg // 15.-17.10.2018

1) TU Dresden, ILK

1) TU Dresden, ILK

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

1) TU Dresden, ILK

Simulation of manufacturing processes to optimize process parameters

Process chain

Material modeling and parametrization

Process simulation and results

Summary

Process chain

Material modeling and parametrization

Process simulation and results

Summary

Process chain

Material modeling and parametrization

Process simulation and results

Summary

Process chain

Material modeling and parametrization

Process simulation and results

Summary

Manufacturing process

2) TU Dresden, IF

2) TU Dresden, IF

Material modeling and parametrization

Metal (*MAT122-Hill_3R)

Metal sheet: DC05

Constitutive law:

- Anisotropic elastic-plastic
- HILL48-yield criterion
- Temperature independent

Uniaxial tension tests for parameter identification

3) ThyssenKrupp-Company presentation, February 2013

Material modeling and parametrization > Metal (*MAT122-Hill_3R)

Metal sheet: DC05

Constitutive law:

- Anisotropic elastic-plastic
- HILL48-yield criterion
- Temperature independent

Uniaxial tension tests for parameter identification

3) ThyssenKrupp-Company presentation, February 2013

FRP material: CF-PA6.6

FRP material: CF-PA6.6

Matrix

50 µm

- Thermo-elastic-plastic
- V. MISES-yield criterion
- Vanishing stiffness and yield stress at melting temperature

FRP material: CF-PA6.6

Matrix

50 µm

- Thermo-elastic-plastic
- V. MISES-yield criterion
- Vanishing stiffness and yield stress at melting temperature

- Effective behavior
- Anisotropic, non-linear elastic
- Different treatments for tension/compression and shear response

Temperature dependent material behavior of polyamide 6.6 (PA6.6)

Stress-strain curves (–40 $^{\circ}$ C $< T < 150 {}^{\circ}$ C) of PA 6.6 from database: *"Campusplastics"*

- Determination of stiffnesses and initial yield stresses by EHRENSTEIN⁴⁾
- Empirical extrapolation approach⁵⁾ for flow rules at higher temperatures

4) Ehrenstein 2001 5) Behrens et al. 2015

Temperature dependent material behavior of polyamide 6.6 (PA6.6)

Stress-strain curves (–40 $^{\circ}$ C $< T < 150 {}^{\circ}$ C) of PA 6.6 from database: *"Campusplastics"*

4) Ehrenstein 2001 5) Behrens et al. 2015

Temperature dependent material behavior of polyamide 6.6 (PA6.6)

Stress-strain curves (–40 $^{\circ}$ C $< T < 150 {}^{\circ}$ C) of PA 6.6 from database: "Campusplastics"

Tg

fitting points

Arrhenius-fit

100

T / °C

WLF-fit

4) Ehrenstein 2001 5) Behrens et al. 2015

0

ο

 10^{4}

10³

10²

/ MPa

Ш

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

300

200

 $T_{\rm m}$

Textile material: biaxial reinforced weft-knitted fabric

Reinforcement yarns: carbon fiber (CF) & polyamide 6.6 (PA6.6)

Knitting yarns: glass fiber (GF) & PA6.6

Textile material: biaxial reinforced weft-knitted fabric

Reinforcement yarns: carbon fiber (CF) & polyamide 6.6 (PA6.6)

Knitting yarns: glass fiber (GF) & PA6.6

Textile material: biaxial reinforced weft-knitted fabric

Reinforcement yarns: carbon fiber (CF) & polyamide 6.6 (PA6.6)

Knitting yarns: glass fiber (GF) & PA6.6

6) TU Dresden, ITM

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Process modeling

Parameter	Value
T_0^{FRP}	300 ° C
\mathcal{T}_0^{Metal}	220 °C
T^{Tool}	150 °C (const.)
$t_{ m Process}$	3 s
<i>n</i> _{Elements}	$pprox 2 \cdot 40000$
$h_{Elements}$	$pprox 2{ m mm}$
$\Delta t_{ m mech}$	$pprox 1 \cdot 10^{-6}{ m s}$
${\it \Delta}t_{ m therm}$	$pprox 1 \cdot 10^{-4}\mathrm{s}$

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Process modeling

Parameter	Value
T_0^{FRP}	300 ° C
\mathcal{T}_0^{Metal}	220 °C
T^{Tool}	150 °C (const.)
$t_{ m Process}$	3 s
<i>n</i> _{Elements}	$pprox 2 \cdot 40000$
$h_{Elements}$	$pprox 2{ m mm}$
${\it \Delta}t_{ m mech}$	$pprox 1 \cdot 10^{-6}{ m s}$
${\it \Delta}t_{ m therm}$	$pprox 1 \cdot 10^{-4} m s$

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Process modeling

Parameter	Value
T_0^{FRP}	300 ° C
\mathcal{T}_0^{Metal}	220 °C
T^{Tool}	150 °C (const.)
$t_{ m Process}$	3 s
$n_{\rm Elements}$	$pprox 2 \cdot 40000$
$h_{Elements}$	$pprox 2{ m mm}$
${\it \Delta}t_{ m mech}$	$pprox 1 \cdot 10^{-6}{ m s}$
${\it \Delta}t_{ m therm}$	$pprox 1 \cdot 10^{-4} m s$

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Process modeling and results

Parameter	Value
t _{Forming}	1 s
VPunch	50 mm/s
F_{Binder}	10 kN
$t_{Holding}$	2 s

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

Results

Formation of wrinkles due to missing tensile forces in x-direction

Results

Formation of wrinkles due to missing tensile forces in x-direction

✓ Formulation for temperature dependent forming behavior of pre-consolidated fiber-reinforced thermoplastics

- ✓ Formulation for temperature dependent forming behavior of pre-consolidated fiber-reinforced thermoplastics
- ✓ Numerical modeling of thermoforming process

- ✓ Formulation for temperature dependent forming behavior of pre-consolidated fiber-reinforced thermoplastics
- ✓ Numerical modeling of thermoforming process
- > Validation of material model (FRP) and determination of additional parameters

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

- ✓ Formulation for temperature dependent forming behavior of pre-consolidated fiber-reinforced thermoplastics
- ✓ Numerical modeling of thermoforming process
- > Validation of material model (FRP) and determination of additional parameters
- Considering of delamination

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

- ✓ Formulation for temperature dependent forming behavior of pre-consolidated fiber-reinforced thermoplastics
- ✓ Numerical modeling of thermoforming process
- > Validation of material model (FRP) and determination of additional parameters
- Considering of delamination
- Parameter studies of thermoforming

Numerical Modeling of Single-Step Thermoforming of a Hybrid Metal/FRP Lightweight Structure Jean-Paul Ziegs Bamberg // 15.-17.10.2018

