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Motivation for Fibre Metal Laminates in Body Applications

 Lightweight design is considered a key technology for 

competitiveness in current vehicles [SCH17]

 … even in electric vehicles with recuperation

(~35% of energy consumption is mass-dependent)

 Wide range of requirements in structural applications

 Low density, high stiffness, high strength coupled with 

medium/high ductility, good formability, joining, …

 Hybrid materials/”tailored materials” combine different 

materials with different properties to a “better” one

 Here: Sandwich materials 2/1 lay-up (Metal/CFRP/Metal)

 Questions:

 Material choice?

 Manufacturing? Bonding? Cycle times?

 Mass reduction in crash applications?

 Virtual study! Simulation models?

Multi-material design is already present…
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Material Choice and Expectations on “Tailored Materials”

 Steel (MHZ340, 0.25 mm): Established body application steel, good overall properties

 Magnesium alloy (AZ31b, 1.0 mm): Available as sheet, low density and good formability

 CFRP (45±5 %, various thickness): highest lightweight potential, good stiffness/strength
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Manufacturing of FML Sheets with Thermoplastic Matrix

 Thermoset matrix (e.g. GLARE)

 Production of sandwich via autoclave

 Preforming of metal needed

 Problem: High cycle times (hours)

 Thermoplastic PA6 matrix (used here):

 Process developed in LEIKA project

 Pre-production of sandwich sheets

 “Standard” hot forming (fast) for

part production (mostly bending)

 Consolidation of CFRP within 

production process of sandwich

 Activation of adhesion agent and 

bonding via temperature/pressure

 Question: Manufacturing impact on 

material? Temperature induced 

stresses, bonding, consolidation, …
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Additional Boundary Conditions when Modelling these FMLs

Influence of Manufacturing

Magnesium AZ31b Anisotropy

Bonding/Delamination

[LOU07]

[NES14]

Full Vehicle Crash Simulation

Residual stresses

(metal, FRP)

Bonding/

adhesion agent

CFRP

consolidation

Process parameters (time,

temperature, pressure)
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Modelling and Calibration Process for FML in Crash Simulation

 Stacked shell modelling using cohesive elements 
(ELFORM 20) and shells (ELFORM 8 with physical 
hourglass control), element size of ~5 mm

 Metals (Steel and Mg): MAT_124

 LC input for tension and compression (needed for 
proper Mg modelling and residual stresses)

 Strain rate depended plasticity (Steel)

 Simplifications: No anisotropy or advanced failure

 CFRP (lay-up of UD tapes): MAT_58

 Sufficient representation, distinct failure

 Cohesive zones: MAT_138 (or CONTACT_TIEBREAK)

 no increased time step size, few parameters

 Disclaimer for test data: Prototype material made in 
laboratory environment
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Calibration of FML on Specimen Level: Tensile Tests

 Mg AZ31b 1,0 mm / CFRP 45 vol% 0.7 mm (total: 2.7 mm)

 Failure strength 25 kN equivalent to 455 MPa averaged stress

 Failure strain of 1.5% comparable to CFRP max. strain

 CFRP (MCM) Young’s Modulus: 100 GPa (0°) slightly lower 

than expected, 10 GPa (90°) much higher than calculated

 St MHZ340 0.25 mm / CFRP 45 vol% 1.5 mm (total: 2.0 mm)

 CFRP (SCS) Young’s Modulus: 90 GPa (0°), 10 GPa (90°)

 Influence of production on CFRP core

Pictures: J. Jaschinski (TU Dresden)

Main influence: Residual

stress in metal (~ 100 MPa)

Main influence:

Stiffness CFRP

Main influence:

Strength CFRP

MCM 0° tensile testMCM 90° tensile test

MCM 0° tensile test
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Calibration of FML on Specimen Level: Bending Tests

Pictures: J. Jaschinski (TU Dresden)
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Calibration of FML on Component Level: Crush Tests
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Yellow: St MHZ340 outer layer

Red/Blue: CFRP core layer

t = 55 mst = 4 ms t = 8 ms t = 19 ms

Local second buckling

SCS 0° component crush test

 Hat profile SCS with 1.5 mm CFRP core layer

 Impact: 300 kg falling mass with v0=11.5 m/s

 Initial force of 130 kN followed by an energy absorbing 

phase at ~70-80 kN

 Good correlation between simulation and test data/video

 Delamination between CFRP and steel covered
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Calibration of FML on Component Level: Bending Tests

Local failure and

buckling

Large-area failure and

buckling around impactor

SCS 0° component bending test

Higher force due to

large-area buckling

 Hat profile SCS with 1.5 mm CFRP core layer

 Impact: 51 kg falling mass with v0=6.15 m/s

 Initial force of 21 kN (good correlation) followed by an 

energy absorbing phase at ~10-15 kN (deviant behaviour)

 Explanation/current status: Mesh of 5 mm element size 

cannot cover the initial local effect  large-area failure
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Development and Manufacturing of a Prototype

Seat member

MCM-0.7

Floor

Litecor

Tunnel

Lower Long Member

SCS-1.5

Front Tunnel

CMC

Bulkhead Plates

SCS-1.5

Battery Floor

MHZ340 Rib Structure

PA6-GF30

(analogue to MCM)
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Testing of the FML Floor Structure under Crash Load

Fixations

Fixations
Fixation Bar

Rocker Substitute

Steel (3 mm)

High Speed Camera

Fixation (Rocker Substitute)

Screwing (Fixation Bar)
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Test Evaluation and Comparison with Simulation
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 Good overall correlation of simulation and test in structural 

behaviour, maximum force and maximum impactor travel

 Rupture of seat member (MCM) is covered in simulation

 Stability of tunnel structure (SCS) is predicted
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Application on Full Vehicle Level – Lightweight Design Study

 Reference vehicle: High strength steel state-of-the-art

 Construction of two floor structures: MCM only, SCS only

(non-crash structures in AZ31b / Steel-Thermoplastic)

 Geometry of FML floor structure considers manufacturing 

and joining constraints (bending, rivets, adhesives)

 Crash analysis targets: same structural key parameters

 Intrusion passenger compartment / battery comp.

 Accelerations 

 Survival space

 Lightweight benefit of SCS floor structure: 23.1%

 energy absorption via buckling and bending

 Lightweight benefit of MCM floor structure: 29.6%

 failure mainly due to rupture and crushing

 If the mass comparison only considers SCS/MCM parts: 

Lightweight benefit with SCS/MCM roughly the same: 

28% overall weight saving, seat members >40%
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Conclusion

 Motivation of FMLs in body applications by “tailored” properties

Ductility (metal) + spec. energy absorption (CFRP) + stiffness (sandwich)

 Steel-CFRP and Magnesium-CFRP were chosen as representatives

 Modelling in simulation using stacked shell-approach

 metal and CFRP as shell, cohesive zones as interface

 Production process has high impact on material properties

 new calibration method needed, only metal is calibrated as

monolithic material, CFRP has to be calibrated via FML tests

 Tensile, bending, hat profile tests for calibration, validation via

prototype floor structure in pole crash  Validation success

 interlaminar failure observed in specimen bending (not considered)

 bending of hat profile shows deviant deformation behaviour

 Model was applied on a full vehicle crash model with FML-floor structure 

(SCS and MCM), lightweight study shows 28% possible weight saving

 Components under axial load (unidirectional core) up to 40% savings in 

mass compared to high strength steel reference

t = 55 mst = 4 ms t = 8 ms t = 19 ms
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Thank you for your attention! Questions?
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