Applications & Potential of Classifiers In LS-OPT 6.0

Anirban Basudhar (LSTC),

K. Witowski (DYNAmore GmbH), I. Gandikota, N. Stander, D. Kirpicev (LSTC)

15th German LS-DYNA Forum, October 2018

Overview

Metamodeling Challenges

- Statistical Classification-based Constraint Definition in LS-OPT 6.0
- Support Vector Machines (SVM)

- Examples discontinuous responses, hidden/binary constraints, multidisciplinary constraints, system reliability
- Future enhancements/Potential Applications/Summary

Constraint Approximation Using Metamodels

Metamodeling Challenges

What if simulation does not provide quantifiable response values?

- Failed simulations
- Binary pass/fail information (e.g. 3rd party proprietary response values)
- Failure determined through prior experience

Layman, R. et al. "Simulation and probabilistic failure prediction of grafts for aortic aneurysm." *Engineering Computations* 27.1 (2010): 84-105.

Basudhar, Anirban, and Samy Missoum. "A sampling-based approach for probabilistic design with random fields." *Computer Methods in Applied Mechanics and Engineering* 198.47-48 (2009): 3647-3655.

Conventional Metamodel Approximation Not Possible!

Constraint Boundary Using Classification

Examples:

- Simulation failure,
- 3rd party propreitary information
- Unknown threshold
- Combining experience with simulations etc.

Infinite number of boundaries possible!!

Need Optimal boundary

Optimal Boundaries Using Support Vector Machine

Optimal SVM maximizes the margin

- Separating Hyperplane
 s(x) = w.x + b = 0
- Support Hyperplanes
 s(x) = +1 and s(x) = -1
- Margin = 2/||**w**||
- General nonlinear separating function:

$$b + \sum_{i=1}^{NSV} \lambda_i y_i K(\mathbf{x}_i, \mathbf{x}) = 0$$

Classifier GUI In LS-OPT

Ex 1: Optimization with Discontinuous Constraint

Modal Analysis of a simple car - mode shape tracked to account for switching

- min Mass
- s.t. 1^{st} Torsional Mode Frequency ≥ 2.2

Mode switching causes discontinuity in the frequency response

Ex 1: Metamodel for Discontinuous Constraint

Ex 1: SVM Classifier for Discontinuous Constraint

tbumper

250 samples

Ex 2: Non-convex discontinuous constraint reliability

Ex 2: Non-convex discontinuous constraint reliability

- SVM able to approximate highly nonlinear boundaries accurately
- Single classifier represents 3 intrusion constraints (system reliability)

Failure probability using Neural Network Metamodel (400 samples): 0.0217 Failure probability using SVM Classifier (400 samples): 0.0218 Actual Failure probability: 0.0219

Ex 3: 2-disciplinary System Reliability (Unequal Costs)

- Torsional mode frequency constraint added (frequency > 41.6)
- NVH analysis followed by crash analysis
- Because classifier is used, *crash analysis needed only at feasible NVH points*
- Crash simulation savings: 246 out of 400 (61.5 %)

Ex 3: 2-disciplinary System Reliability (Unequal Costs)

- We can get a very accurate decision boundary for inexpensive load cases
- Expensive cases sampled within the domain defined by the classifier

Crash Samples (154)

Dual-disciplinary Classification

NVH Samples (400+)

Ex 3: 2-disciplinary Constraint Comparison

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings

Ex 4: Multidisciplinary Optimization (MDO) Cost Savings

Adaptive Sampling

Sampling near classifier boundary

Basudhar, Anirban, and Samy Missoum. "An improved adaptive sampling scheme for the construction of explicit boundaries." Structural and Multidisciplinary Optimization 42.4 (2010): 517-529.

Sampling the feasible regions •

Prof. F. Pourboghrat (OSU)

Adaptive Explicit Multi-Objective Optimization (MOO)

Var1

Basudhar, Anirban. "Multi-objective Optimization Using Adaptive Explicit Non-Dominated Region Sampling." *11th World Congress on Structural and Multidisciplinary Optimization*. 2015.

MOO considered as a classification problem: DOMINATED vs NON-DOMINATED

Probabilistic Classifiers

• Constrained Efficient Global Optimization

Basudhar, Anirban, et al. "Constrained efficient global optimization with support vector machines." *Structural and Multidisciplinary Optimization* 46.2 (2012): 201-221.

Conservative Failure Probability Estimate

Basudhar, Anirban, and Samy Missoum. "Reliability assessment using probabilistic support vector machines." *International Journal of Reliability and Safety* 7.2 (2013): 156-173.

• Probabilistic SVM, Random Forest Classifier

Adaptive simulation time reduction

Check failure criteria during simulation

Summary

- Classifier-based constraint definition method in LS-OPT 6.0
- Support Vector Machines used for classification

Benefits shown for binary/discontinuous response & MDA/MDO

- Series/parallel or mixed system constraints can be defined
- Classifiers can be used for optimization or for reliability

