

15. Deutsches LS-Dyna Forum 2018

Integration neuer graphischer Auswertemethoden zur verbesserten Erkennung von Blechversagen unter dem Einfluss nicht-linearer Dehnungspfade

P. Hora, L. Tong, N. Manopulo

Experiments n.I. FLC: W. Volk, Ch. Gaber, UTG

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

stitut für Virtuelle Produktior

stitute of Virtual Manufacturing

IVP's LS-Dyna developments

- Development of stainless steel material models (MAT_TRIP Hänsel model)
- Development of press hardening material models (22MnB5)
- Implementation of YLD2000 and HAH with distortional hardening
- Development of combined neckig-crack failure models for multilayer Al-sheets (FUSION)
- Implementation of non associated flow rules (NAFR) in combination with YLD2000

Application in many «engineering» cases

.

1.4301 metastable behavior

$$\frac{\mathrm{d}\mathbf{V}_{\mathrm{M}}}{\mathrm{d}\varepsilon} = \frac{\mathrm{B}}{\mathrm{A}} \cdot \mathrm{e}^{\frac{\mathrm{Q}}{\mathrm{T}}} \cdot \left(\frac{1 - \mathrm{V}_{\mathrm{M}}}{\mathrm{V}_{\mathrm{M}}}\right)^{\frac{1 + \mathrm{B}}{\mathrm{B}}} \cdot \mathrm{V}_{\mathrm{M}}^{\mathrm{p}} \cdot \left[0.5 \cdot \left(1 - \tanh\left(\mathrm{C} + \mathrm{D} \cdot \mathrm{T}\right)\right)\right]$$

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

15. Deutsches LS-Dyna Forum 2018

 $V_{M} = \int_{0}^{\varepsilon} \frac{dV_{M}}{d\varepsilon} d\varepsilon$

Source: J.Krauer Diss. ETH 2010 A.Hänsel, Diss. ETH 1998

Hänsel Model (MAT_TRIP)

Description by Hänsel

Hardening curve	A _{HS}	B _{HS}	m	n	К
	297.5	1542.1	2.39	1.0	0.00182

Martensite parameters	Α	В	С	D	р	Q	E
	0.83	0.168	-47.892	0.0	8.011	1376.15	0.

$$k_{f}^{ges} = \left[B_{HS} - \left(B_{HS} - A_{HS} \right) \cdot \exp\left(-m \cdot \varepsilon^{n} \right) \right] \cdot f_{2}(T) + \Delta k_{f}^{\gamma \rightarrow}$$

Startbedingung für Hänsel-Funktion: if $(\varepsilon_{eq} > E_o)$

*MAT_113

*MAT_TRIP

*MAT_TRIP

This is Material Type 113. This isotropic elasto-plastic material model applies to shell elements only. It features a special hardening law aimed at modelling the temperature dependent hardening behavior of austenitic stainless TRIP-steels. TRIP stands for Transformation Induced Plasticity. A detailed description of this material model can be found in Hänsel, Hora, and Reissner [1998] and Schedin, Prentzas, and Hilding [2004].

Card Format (I10, 7E10.0)

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	E	PR	СР	T0	TREF	TA0
Туре	A8	F	F					
Default								

Card Format (8E10.0)

Card 2	1	2	3	4	5	6	7	8
Variable	A	В	С	D	Р	Q	E0MART	VM0
Туре	F	F				1		
Default								

Card Format (8E10.0)

Card 3	1	2	3	4	5	6	7

Variable	AHS	BHS	М	N	EPS0	HMART	K1	K2
Туре			6				5	
Default	67 (S						2	3)

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

15. Deutsches LS-Dyna Forum

8

Complex constitutive models in metal forming

Simulation Results

Prediction of "crash" material behavior

0.05

(2)

Development of combined neckig-crack failure models for multilayer Al-sheets (FUSION)

Source: M.Gorji Diss. ETH 2015

Impact of constitutive models on FEM results

Anisotropic Hardening

Strain dependent Barlat 2000 Model

Anisotropic Hardening – YLD2000-var model

Strain dependent Barlat 2000 Model

$$\Phi = |X_1' - X_2'|^a + |2X_2'' + X_1''|^a + |2X_1'' + X_2''|^a = 2\bar{\sigma}^a$$

$$X' = C's = C'T\sigma = L'\sigma$$
$$X'' = C''s = C''T\sigma = L''\sigma$$

$$L'_{11} = \frac{2}{3}\alpha_1 \qquad L''_{11} = \frac{-2\alpha_3 + 2\alpha_4 + 8\alpha_5 - 2\alpha_6}{9}$$

$$L'_{12} = -\frac{1}{3}\alpha_1 \qquad L''_{12} = \frac{\alpha_3 - 4\alpha_4 - 4\alpha_5 + 4\alpha_6}{9}$$

$$L'_{21} = -\frac{1}{3}\alpha_2 \qquad L''_{21} = \frac{4\alpha_3 - 4\alpha_4 - 4\alpha_5 + \alpha_6}{9}$$

$$L'_{22} = \frac{2}{3}\alpha_2 \qquad L''_{22} = \frac{-2\alpha_3 + 8\alpha_4 + 2\alpha_5 - 2\alpha_6}{9}$$

$$L'_{33} = \alpha_7 \qquad L''_{33} = \alpha_8$$

Strain dependent evolution of the YLD2000 parameters

Applicability of NAFR models in combination with YLD2000

Check of the YL by Nakajima tests

AA6016

EHzürich

AA6016

YLD2000-2D-NAFR

Yield Locus and Plastic Potential

EHzürich

Optimum Search Response Surface

- Two Nakajima configurations
 - B100
 - B200
- Full factorial design for the yield locus and plastic potential exponents

 $M_{\sigma}, M_{p} = \{3, 4.5, 6, 8\}$

 Response surface based on error function values at the supports

Yield criterion – General Idea

Source: Ch. Raemy, Diss ETH 2017

- Stress state parametrized by spherical coordinates r, φ, ψ
- A formally very compact criterion is proposed (FAY Fourier Anisotropic Yield)

$$\bar{\sigma} = r \sqrt[q]{f(\varphi, \psi)}$$

• $f(\varphi, \psi)$ is a two-dimensional Fourier series of the angular coordinates

$$f(\varphi, \psi) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m,n} \cos(m\varphi) \cos(n\psi) + \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} b_{m,n} \cos(m\varphi) \sin(n\psi) + \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} c_{m,n} \sin(m\varphi) \cos(n\psi) + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} d_{m,n} \sin(m\varphi) \sin(n\psi)$$

• Shape of yield surface adjustable through the coefficients of f

ETH zürich

FAY Model Convexity

Source: Ch. Raemy, Diss ETH 2017

Comparison of non-AFR and FAY

Nakajima Results. Material AA6016

Figure 1: Measured and predicted strain distributions during Nakajima test of AA6016 at strokes of 5 mm, 10 mm, 15 mm, 20 mm and 25 mm; for B200 additionally at 30 mm.

Correct failure prediction – FLC based methods

 Time dependent evaluation method (Volk, Hora, 2010)

 MMFC Modiffied maximum force criterium (Hora-Tong)

Conventional forming limit curve (FLC)

15. Deutsches LS-Dyna Forum 2018

Integration neuer graphischer Auswertemethoden zur verbesserten Erkennung von Blechversagen unter dem Einfluss nicht-linearer Dehnungspfade

P. Hora, L. Tong, N. Manopulo

Experiments n.I. FLC: W. Volk, Ch. Gaber, UTG

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)

3

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

EHzürich

Necking and fracture limits - X-FLC concept

Schematic prediction of forming limits dependent on different failure modes

15. Deutsches LS-Dyna Forum 2018

E *H* zürich

Failure detection models

ETH zürich

Failure detection models

PART I NECKING PREDICTION

PART II CRACK PREDICTION

Shear crack

Edge crack

Bending crack

17 October 2018

s LS-Dyna Forum 2018

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)

3

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

Experimental evaluation of linear FLC

5.21 Forming limit diagrams defined by Keeler and Goodwin [5.75]

Strain history plot (AA6016)

What is the appropriate localization level ?

What is the correct definition of the FLC values ?

FLC evaluation methods

Test: Nakajima or Marciniak test Evaluation: Cross-section or time dependant evaluation method

Continuous development of the localized necking zone

Aktueller Stand zeitabhängige Verfahren H. Friebe und T. Möller

FLC does not describe the rupture

.... but only the start of the necking process under some loading conditions

Standard "misleading" FLC interpretation

Conventional forming limit curve (FLC)

Continuous development of the localized necking zone

FLC does not describe the rupture

.... but only the start of the necking process under some loading conditions

For incremental forming processes the limits are above the FLC

.... also other processes like hemming are above the FLC

Forming in the conditional stable area

Source Company AMINO

ETH zürich

Limitations in the FLC prediction Crack strains in hemming

Hemming test – detection of crack strains

Source: M. Gorji. Diss. ETH 2016

Conditionally stable behavior in the range above the FLC

Continuous development of the localized necking zone

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)

3

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

... some Nakajima specimens may not cover correctly the deep drawing behavior

Validity of Nakajima tests

... does B20 correspond to the DD behavior on real parts?

... does B20 correspond to the DD behavior on real parts?

HC220YD, 0.8 mm

AA5182, 1.1 mm

The most left B20 specimen measurements deviates from the strain constrained conditions in the deep drawing case. For those reasons the so evaluated FLC shows a drop down of the FLC on the left hand side which cannot be observed under real deep drawing conditions.

FLC data: Numisheet BM 2008 - FLC-Benchmark

Based on the experimental FLC the simulation shows to conservative behavior

Differences between DD and B20 forming conditions

Stress driven BC

Strain driven BC

ETH zürich

Stress BC

Tensile Test - Condition β =-0.5

Material AA 6016

Differences between strain and stress BC

Stress-based: Eps11=~0.4 Strain-based: Eps11=~0.6 At localization

Impact of the BC on the necking behavior

Stress driven BC

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

Dismiss

Clear

-0.215 0.280

... different parameters like curvature may not be coverd correctly as well

Limitations in the FLC prediction Influence of thickness

Material RRSt 1403 (AISI 1006)

Source: Handbook of Metal Forming, Ed. McGraw -Hill Book Co. N.Y., 1985, p 18.13

Limitations in the FLC prediction Influence of curvature

FLC evaluation with different punch geometries

Source: V.Hasek: Untersuchung und theoretische Beschreibung wichtiger Einflussgrössen auf das Grenzformänderungsschaubild. Blech-Rohre-Profile . 25(1978)213-220 or. Buch Lange Umfortmtechnik Bd. 3, p.51-57

Limitations in the FLC prediction Influence of stretch bending in FLD0

FLD0 – Values in a stretch-bending test

Source: <u>F.M. Neuhauser^{1,2}</u>, O.R. Terrazas¹, N. Manopulo², P. Hora² and C.J. Van Tyne **Stretch bending – the plane within the sheet where strains reach the forming limit curve.** In Proceeding of IDDR2016

Limitations in the FLC prediction Crack strains in hemming

Hemming test – detection of crack strains

Source: M. Gorji. Diss. ETH 2016

... the strain path are even on simple parts not always linear

- When passing through a draw bead the sheet is bent up to 8 times.
- This results in a reversal load, which is not detected by the linear FLC
- Material specifically, this leads to an increase in the FLD₀ value [publications by T. Van den Boogaard (2008) or Neuhauser et.al (IDDRG 2016)]

Nonlinear Deformation Paths Cross-Die

15. Deutsches LS-Dyna Forum 2018

PREDICATBILITY OF NECKING LIMITS BASED ON NUMERICAL MODELS

Theoretical failure prediction

Virtual FLC Prediction

Theoretical models in failure predictions

- Marciniak
- Rice
- Hutchinson
- Ghosh
- Needleman
- Stören
- Keeler
- Miyauchi
- Budianski
- Kobayashi
- Koistinen

Applicability of numerical models

Effects	MK-Models	GTN Models	MMFC-Models	GFLC (Volk et.al)
Thickness	only t _A /t _B	(not explicitly)	Included as t/R ratio	(not explicitly)
Curvature	NO	(not explicitly)	Included as t/R ratio	(not explicitly)
Strain rate	YES	YES	YES	(not explicitly)
Non-linear path	YES	Stress path dependent	YES	YES
Significant weaknesses	Inhomogeneity assumption	Unclear evolution o damage	Single point model	Based on experimental data

Content

3

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)
- Prediction of non-linear strain-paths

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

ETH zürich

MMFC

Localization condition with plane strain state

"M-K" FEM evaluation

eMMFC with strain rate extension

MMFC

Marciniak's remark GM symposium 1978

Reference:

Z. Marciniak: Sheet metal forming limits. In Koistinen D.P.; Wang N.M. (eds): Mechanics of Sheet Metal forming, New York/London Plenum Press 1978,

pp. 215-235.

Ghosh's formulation (1974)

Under the assumption that the hardening is a function of

$$\overline{\sigma} = H(\overline{\varepsilon}, \dot{\overline{\varepsilon}}, \beta, T, ...)$$

Ghosh expressed the instability criterion in dependency of those parameters with

$$\left(\frac{\partial\sigma}{\partial\overline{\varepsilon}}\right)\frac{d\overline{\varepsilon}}{d\varepsilon_{_{11}}} + \left(\frac{\partial\sigma}{\partial\overline{\varepsilon}}\right)\frac{d\dot{\varepsilon}}{d\varepsilon_{_{11}}} + \left(\frac{\partial\sigma}{\partial\beta}\right)\frac{d\beta}{d\varepsilon_{_{11}}} + \left(\frac{\partial\sigma}{\partial T}\right)\frac{dT}{d\varepsilon_{_{11}}} = \frac{\overline{\sigma}}{Z_{_{d}}}$$

A.K. Ghosh: Strain localization in the diffuse neck in the sheet metal. Metalurgical Transaction, Vol. 5(1974), pp. 1607-1615

MMFC models

	Presented in	Туре	MMFC-Version
MMFC_1993	TKS report 1993	Report	Theoretical basics
MMFC_1994	IDDRG'94	Paper	MMFC Temp., Thickness/Curvature
MMFC_1996	Numisheet'96	Paper	MMFC nI. strain path
MMFC_2002	Numisheet'02	Paper	MMFC nI. strain path
MMFC_2003	Plasticity'03	Abstract	Enhanced MMFC / Thickness
MMFC_2006	Plasticity'06	Keynote	Enhanced MMFC / Thickness
MMFC_2007	IDDRG	Paper	eMMFC for FLC-T
MMFC_2007	Numiform'07	Paper	eMMFC for FLC-T Stainless steel
MMFC_2016	IDDRG	Paper	eMMFC-SR Strain rate dependency

See www.ivp.ethz.ch/docs/index

ETH zürich

Theoretical prediction of FLC based on curvature and strain rate dependent MMFC criterions

P. Hora¹, L. Tong, N. Manopulo

¹ ETH Zurich, Institute of Virtual Manufacturing, Tannenstr. 3, 8092 Zurich, Switzerland

E-mail: hora@ivp.mavt.ethz.ch

Abstract. Formability predictions in industrial sheet metal forming applications still rely on the Forming Limit Diagrams (FLD). The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. For the theoretical prediction of FLC the well-known M-K criterion as well as the MMFC criterion can be used. The contribution discusses the applicability of an extended MMFC formulation under the consideration of bending as well as strain rate effects. The evaluation and comparison with the experimental FLD is given for the material HC220-YD.

1 Introduction

Nowadays forming limits in sheet forming processes are mostly predicted based on the necking initiation. This limit is usually evaluated with the Nakajima test. The FLC's are in this way only valid for linear strain paths and for negligible curvature radii. Typically, the so evaluated FLC will be used as reference for the forming limit prediction without further detailed consideration of superimposed bending. Figure 1 depicts the cracked Nakajima specimens (left) as well as the failure interpretation scheme according to the FLC (right).

IDDRG 2016 Theoretical background MMFC s.

IDDRG 2018

Software extension for nonlinear strain path.

MMFC generalized equation

$$H'\left(1+\frac{t}{2\rho}+E_0*\left(\frac{t}{t_0}\right)^n\right) \leq \left(\frac{f(\alpha)+\frac{f'(\alpha)g(\beta)\beta}{\beta'(\alpha)\varepsilon}}{f(\alpha)g(\beta)}\right)*H$$

Stress evaluation procedure:

 $\sigma_i(\beta); \ \overline{\sigma}:$ direct evaluation based on the yield locus function F

Topology:

- t. Thickness
- ρ : Die curvature

Material hardening function:

H: Hardening curve $H(\bar{\varepsilon}, \dot{\varepsilon}, \mathsf{T})$

Material model dependent functions:

$$\alpha = \frac{\sigma_2}{\sigma_1} \qquad f(\alpha) = \sigma_1(\beta)/\bar{\sigma}$$

$$g(\beta) = \bar{\varepsilon}/\varepsilon_1 = \mathrm{f}(\alpha)(1+\alpha*\beta)$$

$$\beta = \frac{\frac{dF}{d\sigma_2}}{\frac{dF}{d\sigma_1}} = \frac{\Delta\varepsilon_2}{\Delta\varepsilon_1}$$

ETH zürich

Theoretical prediction of FLC based on curvature and strain rate dependent MMFC criterions

P. Hora¹, L. Tong, N. Manopulo

¹ ETH Zurich, Institute of Virtual Manufacturing, Tannenstr. 3, 8092 Zurich, Switzerland

E-mail: hora@ivp.mavt.ethz.ch

Abstract. Formability predictions in industrial sheet metal forming applications still rely on the Forming Limit Diagrams (FLD). The FLD are commonly specified by the Nakajima tests and evaluated with the so called cross section method. For the theoretical prediction of FLC the well-known M-K criterion as well as the MMFC criterion can be used. The contribution discusses the applicability of an extended MMFC formulation under the consideration of bending as well as strain rate effects. The evaluation and comparison with the experimental FLD is given for the material HC220-YD.

1 Introduction

Nowadays forming limits in sheet forming processes are mostly predicted based on the necking initiation. This limit is usually evaluated with the Nakajima test. The FLC's are in this way only valid for linear strain paths and for negligible curvature radii. Typically, the so evaluated FLC will be used as reference for the forming limit prediction without further detailed consideration of superimposed bending. Figure 1 depicts the cracked Nakajima specimens (left) as well as the failure interpretation scheme according to the FLC (right).

IDDRG 2016 Theoretical background MMFC s.

IDDRG 2018

Software extension for nonlinear strain path.

Numerical evaluation of the Yield locus specific functions

• $f(\alpha) = \frac{\sigma_1(\beta)}{\overline{\sigma}} = Yield \ Locus \ (Hill 48, Hill 79, Hill 90, Barlat 2000,)$

Evaluation based on plastic work equivalence $\Delta W = \Delta \varepsilon_1 * \sigma_1 + \Delta \varepsilon_2 * \sigma_2 = \Delta \overline{\varepsilon} * H$ leads to:

$$g(\beta) = \frac{\overline{\varepsilon}}{\varepsilon_1} = f(\alpha)(1 + \alpha * \beta)$$

Specification for Hill'79 (1)

Funktion $f(\alpha)$

Yield function

$$2(R+1)\sigma_v^m = (2R+1)|\sigma_{11} - \sigma_{22}|^m + |\sigma_{11} + \sigma_{22}|^m$$

Expressed with tress ratio α

$$\sigma_{v} = \left[\frac{2R+1}{2(R+1)}|1-\alpha|^{m} + \frac{|1+\alpha|^{m}}{2(R+1)}\right]^{1/m}\sigma_{1}$$

Function $f(\alpha)$

$$f(\alpha) = \left[\frac{2R+1}{2(R+1)}|1-\alpha|^m + \frac{|1+\alpha|^m}{2(R+1)}\right]^{-1/m}$$

Derivates $f'(\alpha)$

$$f'(\alpha) = \left[\frac{2R+1}{2(R+1)}|1-\alpha|^m + \frac{|1+\alpha|^m}{2(R+1)}\right]^{-\frac{m+1}{m}} \left[\frac{2R+1}{2(R+1)}|1-\alpha|^{m-1} - \frac{|1+\alpha|^{m-1}}{2(R+1)}\right]$$

Specification for Hill'79 (2)

Funktion $g(\beta)$

Equivalent strain increment

$$\Delta \varepsilon_{v} = \frac{\left[2(R+1)\right]^{\frac{1}{m}}}{2} \left\{ \frac{1}{(1+2R)^{\frac{1}{m-1}}} \left| \Delta \varepsilon_{1} - \Delta \varepsilon_{2} \right|^{\frac{m}{m-1}} + \left| \Delta \varepsilon_{1} + \Delta \varepsilon_{2} \right|^{\frac{m}{m-1}} \right\}^{\frac{m-1}{m}}$$

Expressed in function of β

$$\Delta \varepsilon_{v} = \frac{[2(R+1)]^{\frac{1}{m}}}{2} \left\{ \frac{1}{(1+2R)^{\frac{1}{m-1}}} |1-\beta|^{\frac{m}{m-1}} + |1+\beta|^{\frac{m}{m-1}} \right\}^{\frac{m-1}{m}} \Delta \varepsilon_{1}$$

Function $g(\beta)$

$$g(\beta) = \frac{[2(R+1)]^{\frac{1}{m}}}{2} \left\{ \frac{1}{(1+2R)^{\frac{1}{m-1}}} |1-\beta|^{\frac{m}{m-1}} + |1+\beta|^{\frac{m}{m-1}} \right\}^{\frac{m-1}{m}}$$

Specification for Hill'79 (3)

Funktion $\beta(\alpha)$

$$\beta(\alpha) = \frac{-(2R+1)|\sigma_{11} - \sigma_{22}|^{m-1} + |\sigma_{11} + \sigma_{22}|^{m-1}}{(2R+1)|\sigma_{11} - \sigma_{22}|^{m-1} + |\sigma_{11} + \sigma_{22}|^{m-1}} = \frac{-(2R+1)|1 - \alpha|^{m-1} + |1 + \alpha|^{m-1}}{(2R+1)|1 - \alpha|^{m-1} + |1 + \alpha|^{m-1}}$$

Derivates $\beta'(\alpha)$: u'v + uv'

$$\begin{split} \beta'^{(\alpha)} &= \frac{(m-1)[(2R+1)|1-\alpha|^{m-2}+|1+\alpha|^{m-2}]}{(2R+1)|1-\alpha|^{m-1}+|1+\alpha|^{m-1}} + \\ & [-(2R+1)|1-\alpha|^{m-1}+|1+\alpha|^{m-1}]\frac{(m-1)[(2R+1)|1-\alpha|^{m-2}+|1+\alpha|^{m-2}]}{[(2R+1)|1-\alpha|^{m-1}+|1+\alpha|^{m-1}]^2} \end{split}$$

Numerical evaluation for YLD2000

Evaluation based on plastic work equivalence $\Delta W = \Delta \varepsilon_1 * \sigma_1 + \Delta \varepsilon_2 * \sigma_2 = \Delta \overline{\varepsilon} * H$ leads to:

$$g(\beta) = \frac{\overline{\varepsilon}}{\varepsilon_1} = f(\alpha)(1 + \alpha * \beta)$$

MMFC modelling of the strain rate influence

MMFC is a single point evaluation method

The increase of strain rates due to localization can be mapped only by an additional function

Strain rate influence

Influence of strain rate

FEM simulation of a tensile test for a DC05 material

Strain rate dependency

 $\dot{arepsilon}_{11}(arepsilon_{11},oldsymbol{eta})$

FEM Implementation linear interpolation of $A(\beta)$

Beta	A _(k)
-0.5	2.1
0.0	40.6
1.0	220.1
р	2.0

$$\dot{\varepsilon}_{11} = \dot{\varepsilon}_{11}^{\text{hom}} + A(\beta) * [(\varepsilon_{11} - \varepsilon_{11}^{uni}) / \varepsilon_{11}^{uni}]^p$$

VALIDATION LINEAR FLC

Validation examples

- Validation linear FLC
- Influence curvature

MMFC VALIDATION ON AUTOFORM MATERIAL CARDS

DX53D

HX260BD

VALIDATION LINEAR FLC

Validation examples

- Validation linear FLC
- Influence curvature

MMFC

Influence of curvature

eMMFC allows the FLC evaluation under consideration of additional effects

Additional influences on FLC	Parameters
Curvature	Tool Radius R
Thickness	Relative sheet thickness t/R
Temperature	Т
Phase transformation effects	TRIP
Non-linear load history	Multi-step forming
Reverse bending	Draw beads,
Incremental forming	Stabilizing effects

eMMFC criterion

$$H'\left(1+\frac{t}{2\rho}+E_0*\left(\frac{t}{t_0}\right)^n\right) \leq \left(\frac{f(\alpha)+\frac{f'(\alpha)g(\beta)\beta}{\beta'(\alpha)\varepsilon}}{f(\alpha)g(\beta)}\right)*H$$

$$\frac{t}{\rho}$$
: thicknes/curvature ratio

$$H = H(\varepsilon_{eq}, \dot{\varepsilon}, T, V_M, \dots)$$

Prediction of extended FLC based on MMFC

$$a_{FLC}(\rho) = \frac{\varepsilon_{FLC}(\rho)}{\varepsilon_{FLC}(\rho_{\infty})}$$

$$k_{FLC} = \frac{1}{a} \frac{\varepsilon_{maj}(\rho)}{\varepsilon_{FLC}(\rho)}$$

EHzürich

Limitations in the FLC prediction Influence of stretch bending in FLD0

FLD0 – Values in a stretch-bending test

Source: <u>F.M. Neuhauser^{1,2}</u>, O.R. Terrazas¹, N. Manopulo², P. Hora² and C.J. Van Tyne **Stretch bending – the plane within the sheet where strains reach the forming limit curve.** In Proceeding of IDDR2016

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)
- Prediction of non-linear strain-paths

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

nstitut für Virtuelle Produktion

stitute of Virtual Manufacturing

MMFC

Non-linear FLC

Nonlinear Deformation Paths Cross-Die

15. Deutsches LS-Dyna Forum 2018

MMFC

Non-linear FLC

The evaluation bases on an incremental evaluation of the condition

$$H'\left(1+\frac{t}{2\rho}+E_0*\left(\frac{t}{t_0}\right)^n\right) \leq \left(\frac{f(\alpha)+\frac{f'(\alpha)g(\beta)\beta}{\beta'(\alpha)\varepsilon}}{f(\alpha)g(\beta)}\right)*\mathrm{H}$$

β can follow a path

- Step 1: classical strain field evaluation procedure
- Step 2: detection of non linear path nodes
- Step 3: evaluation with *nI-eMMFC*

NON-LINEAR FLC

Validation examples

- Validation Simple tensile test Material HC340LA
- Case study Different non-linear loading cases material DC04
- Application Cross die Evaluation based on FEM predicted strain paths

Influence of slight β >0 prestreching of Nakajima tests

Case 1

Prestrained under **plane** strain condition $\beta = 0.0$

Preformed

 ϵ_{maj} : 0.10 ; 0.15 ; 0.20

Data	rl Data Base	Mat Type	Experiments	Yield Curve	Yield Locus	Failure	Calculator	Export FEN
	<u>D</u> ata base	n <u>a</u> c type	Experimenta	<u>n</u> eid darve	neia <u>E</u> ocas			EXport E
Mate	erial Name-							
Mat	_1							
Hard	dening							
Ho	ckett-Sherb	y: H= B - (B - A)*exp(-m	*epsv**n)				-
	A		В		м		N	
								_
	336	.554	662.	582	2.39205		0.669	558
Yield	d Locus							
Hil	1'79 Log	an-Hosford	Barlat-Lia	an '89 Hill'	90 YLD-20	00		
		Hill90	oarameters:	a : b: rs: m				
_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	-0.1	5684	-0.63	3321	3.8685	5		2
1						1		_ []
							_	
	Set by R-va	lues A	0 0.672	R45 1.	094 <i>R90</i>	0.92	2	
						·		
LILIT								
Ch-	- L-Falameu		1.0					
Sne	et i nicknes	·s:	1.0				Advance	ed
Curv	vature Radio	is: E	50.0					
		'						
	Thinning	No	linear nath		v Bange			
			r mour putti	, one.				
C.3								
LUIC	ical Stresse	s r	IFLC Replay				FLC Eva	luation

_ 🗆 ×

17 October 2018

Experimentally evaluated nI FLC

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

15. Deutsches LS-Dyna Forum 2018

Case 2

Prestrained under **tensile** conditions

Preformed $\beta = -0.5$ (= tensile test) \mathcal{E}_{maj} : 0.10 ; 0.20 ; 0.30

nain_ı Data	n Data Base	Mat Type	Experiments	Yield Curve	Yield Locus	Eailure	Calculator	Export EEM	Consistency Check H
Jata	Data base	n <u>a</u> c type	Experimenta	<u>H</u> eld curve	neid <u>E</u> ocus	-condition of			Output
- Mate Mat	rial Name- 1								Yield Curve
1	-								
Hard	ening								0.7
Hoc	kett-Sherb	y: H= B - (B - A)*exp(-m*)	epsv**n)				-	
	A		B		м		N		0.6
	220	EE A		02	2 20205	-	0 0 0 0		
	330.	.534	002.3	02	2.33203		0.003	550	0.5
Yield	Locus								- 04
Hill	'79 Loga	an-Hosford	l Barlat-Liar	n '89 🛛 Hill'	'90 YLD-20	100			- 0.4
		Hill90	parameters: a	a;b;rs;m					0.3
								_	
	-0.1	5684	-0.633	321	3.8685	i		2	0.2
							_		
S	iet by R-va	lues A	0.672	<i>R45</i> 1.	.094 <i>R90</i>	0.92	2		0.1
MMF	C-Paramete	ers	_						0
Shee	et Thicknes	s:	1.0				Advance	ed	
Curv	ature Radiu	IS:	50.0						
									-0.7500E-01 -0.7500E-01 0.7500E-01
		1		1					-0.7500E-01 -0.7500E-01 -0.7500E-01
	I hinning	No	n linear path	. She	ar Kange				-0.7500E-01 -0.7500E-01
Criti	cal Stresse	s I	nIFLC Replay				FLC Eva	luation	-0.7500E-01 -0.7500E-01
									-0.7500E-01

Preformed

 $\beta = -0.5$; \mathcal{E}_{maj} : 0.30

Experimentally evaluated nI FLC

PART II

NON-LINEAR FLC

Validation examples

- Validation Simple tensile test Material HC340LA
- Case study Different non-linear loading cases material DC04
- Application Cross die Evaluation based on FEM predicted strain paths

MMFC

Non-linear FLC

Examples

Examples from the Cross Die and Lackfrosch

- Material: DC04
- Yield Curve: Hockett-Sherby
- Yield Locus: Hill '79

М	В	m	n
154.41	611.36	1.568	0.563
R	m	σ_b/σ_0	
1.87	2.0	1.568	

Failure: eMMFC-Fe

E *H* zürich

E *H* zürich

Example 1

0.8

0.7

Example 1

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

1
Example 2

0.7

Example 2

E *H* zürich

Example 3

0.7

0.6

Example 3

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

|

PART I NECKING PREDICTION

PART II CRACK PREDICTION

hes LS-Dyna Forum 20

17 October 2018

Bending crack

Content

3

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)
- Prediction of non-linear strain-paths

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

4 Conclusions

Experimental tests for ε^{f}

Influence of slight β >0 prestreching of Nakajima tests

Sheet specific evaluation of fracture strains: Thinning method

Source: M. Gorji, B. Berisha, P. Hora, F. Barlat. Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming, International Journal of Material Forming, 2015

Thinning method: Nakajima

Cup drawing test

... how to deal with in-plane shear cracks ?

Out-of-plane and in-plane shear cracks on sheets

Edge cracks: strain limits strongly influenced by the edge quality

Minor True Strain

Institut für Virtuelle Produktion Institute of Virtual Manufacturing

15. Deutsches LS-Dyna Forum 2018

Application of the thinning method

Diss. M. Gorji ETH 2015

Development of combined neckig-crack failure models for multilayer Al-sheets (FUSION)

Fracture Strain based on Thinning Method

Source: M. Gorji, B. Berisha, P. Hora, F. Barlat. Modeling of Localization and Fracture Phenomena in Strain and Stress Space for Sheet Metal Forming, International Journal of Material Forming, 2015

Clad material AA5005

Core material AA6016

For Fusion, both materials (core and clad) lead to similar FLCs. This means that uniform elongation and FLC do not improve by soft cladding.

FEM evaluation method (LS-Dyna)

In the LS-Dyna code the implementation was done by the subroutine UMAT41.

The ***PART COMPOSITE** functionality of FE-code LS-Dyna has been employed instead of the regular shell element.

Based on this element formulation the mechanical properties and thickness distribution of each layer can be described separately.

Published in IDDRG 2016, Linz P. Hora, M.Gorji, B.Berisha: Modelling of fracture effects in the sheet metal forming based on an extended FLC evaluation method in combination with fracture criterions

ETH zürich

Model IV) Linear fracture line – AA6016

Drawing depth 35 mm

Fracture line is measured based on the thinning method (by using Nakazima test) and cup drawing experiment

ETH zürich

Model IV) Linear fracture line – AA6016

Drawing depth 40 mm

Fracture line is measured based on the thinning method (by using Nakazima test) and cup drawing experiment

ETH zürich

Model IV) Linear fracture line – AA6016

Drawing depth 45 mm

Fracture line is measured based on the thinning method (by using Nakazima test) and cup drawing experiment

Source: M.Gorji Diss. ETH 2015

Content

General topics in constitutive modeling

Necking prediction

- Limitations of classical FLC based prediction methods
- FLC Limitations of Nakajima testing methods
- Advanced FLC methods (eMMFC)
- Prediction of non-linear strain-paths

Crack prediction - Sheet specific fracture methods (X-FLC)

- Different experimental methods
- Nakajima based experimental detection of crack (fracture) limits
- Application of X-FLC methods

Conclusions

Summary and Conclusion

Influence of Curvature

stitute of Virtual Manufacturing

- FLC for small bending radii may change significantly compared to the classical FLC
- Stretch bending test proves such dependencies.
- A possible theoretical prediction is given with the eMMFC criterion

Summary and Conclusion (2)

Necking prediction – non-linear FLC

- The eMMFC based FLC prediction seems to deliver reasonable FLC curves.
- It can be simply applied for the visualization of the non-linear path influence on the FLC shape.

Summary and Conclusion (3)

Prediction of cracks

- For the detection of the fracture line ε^f (β) specimens of the classical Nakajima test and a special designed cup drawing test have been used.
- The proposed "thinning evaluation method" in combination with an additional cup drawing test allow a very accurate detection of fracture strains ε^f.
- The combined method allows the prediction for multilayer materials too

15. Deutsches LS-Dyna Forum 2018

Integration neuer graphischer Auswertemethoden zur verbesserten Erkennung von Blechversagen unter dem Einfluss nicht-linearer Dehnungspfade

P. Hora, L. Tong, N. Manopulo, M. Gorji, R. Schober + Prof. W. Volk, Ch.Gaber, UTG

