# LS-DYNA implicit Workshop nonlinear Solver

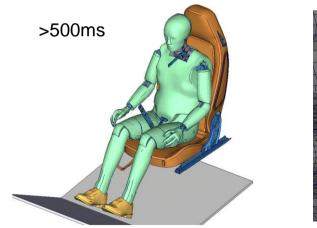
#### Alexander Gromer, Dr. Tobias Erhart, Dr. Thomas Borrvall Bamberg, 11.10.2016

Copyright: Dynamore GmbH, Industriestr. 2, 70565 Stuttgart

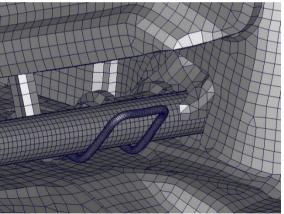


#### > Intro

#### R9 Solver


- Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary




### **Motivation: Why implicit?**

#### pre-stressed, quasi statically loaded structures

#### long duration analysis



## different scales in discretization



# different time scales in process

e.g. static loading followed by transient loading or transient loading followed by static loading

LS-DYNA provides explicit and implicit solution schemes one code – one license - one data structure - one input / output

#### Introduction



© Dynamore GmbH 2016

## **LS-DYNA implicit features**

#### **Basic equipment**

. . .

- Newton, Quasi-Newton, arclength methods
- direct and iterative solvers
- automatic step size adjustment
- Newmark methods with consistent mass matrix



#### Introduction



© Dynamore GmbH 2016

## **LS-DYNA** implicit features

#### **Outstanding features**

- one code one license one input one output
- switching between implicit and explicit in one run
- high scalability through MPP
- mortar contact
- post-processing of residual (out-of-balance) forces





#### > Intro

#### R9 Solver

- Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

#### **LS-DYNA R9.0.1**



© Dynamore GmbH 2016

# Latest official release: R9.0.1

- Release R9.0.1 from August 2016
- Contains several new features in the areas of solid mechanics, multiphysics, and implicit
- Details: <u>http://www.dynasupport.com/news/ls-dyna-r9.0.1-r9.109912-released</u>
- Highly recommended for implicit analyses



#### **General philosophy of LS-DYNA implicit**

# Increased accuracy implies better convergence

#### **LS-DYNA R9.0.1**



© Dynamore GmbH 2016



#### \*CONTROL\_ACCURACY

| Card 1   | 1   | 2   | 3      | 4    | 5 | 6 | 7 | 8 |
|----------|-----|-----|--------|------|---|---|---|---|
| Variable | OSU | INN | PIDOSU | IACC |   |   |   |   |
| Туре     | I   | I   | I      | I    |   |   |   |   |
| Default  | 1   | 2   | 0      | 0    |   |   |   |   |

#### Implicit accuracy option IACC=1

- Higher accuracy in selected material models (24, 123)
  - Fully iterative plasticity, tightened tolerances, smooth failure
- Strong objectivity and consistency in selected tied contacts
  - Physical (only ties to degrees of freedoms that are "real")
  - Finite rotation
- Strong objectivity in selected element types
  - Finite rotation support for hypoelasticity



- > Intro
- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary



© Dynamore GmbH 2016

## **CCSA (former NCAC) Toyota Yaris model**

- ~ 1.2 mio nodes
- ~ 1.2 mio elements
- 1 global contact
- 1 global tied contact (spotweld)





### Preparing the Yaris model for LS-DYNA implicit

- The model has a typical car crash model setup
- Idea: Do as less modifications as necessary to make the model "implicit ready" and keep the explicit model structure/philosophy
- 3 step approach:
- (1) Eigenvalue analysis
- (2) "No load run"
- (3) Small test load (e.g. gravity load)



#### **General model modifications:**

- Changed control cards (for explicit analysis) to crash model recommendation
- Added \*PART\_CONTACT with appropriate OPTT to all parts in contact definition
  - OPTT = 0.9 \* true shell thickness (secant errors)
  - Some volume parts are only represented by shell surfaces. In order to match the part masses the shells have high thickness values.
- Depenetration of the model

Removed the seat foam parts (not needed for the following studies)

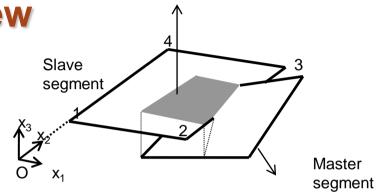


#### **Implicit subset of control cards**

| *CC | ONTROL_ACC | URACY      |        |         |        |         |       |        |  |
|-----|------------|------------|--------|---------|--------|---------|-------|--------|--|
| \$  | osu        | inn        | pidosu | iacc    |        |         |       |        |  |
|     | 1          | 4          |        | 1       |        |         |       |        |  |
| *CC | NTROL_IMP  | LICIT_GENE | RAL    |         |        |         |       |        |  |
| \$  | imflag     | dt0        |        |         |        |         |       |        |  |
|     | 1          | 0.01       |        |         |        |         |       |        |  |
| *CC | NTROL_IMP  | LICIT_SOLU | TION   |         |        |         |       |        |  |
| \$  | nsolvr     | ilimit     | maxref | dctol   | ectol  | rctol   | lstol | abstol |  |
|     | 12         | 6          | 15     | 2.5e-3  |        |         |       | 1.e-13 |  |
| \$  | dnorm      | diverg     | istif  | nlprint | nlnorm | d3itctl |       |        |  |
|     | 1          |            |        | 2       |        | 1       |       |        |  |
| *CC | NTROL_IMP  | LICIT_AUTO | )      |         |        |         |       |        |  |
| \$  | iauto      | iteopt     | itewin |         |        |         |       |        |  |
|     | 1          | 25         | 5      |         |        |         |       |        |  |
| *CC | NTROL_IMP  | LICIT_DYNA | MICS   |         |        |         |       |        |  |
| \$  | imass      | gamma      | beta   |         |        |         |       |        |  |
|     | 1          | 0.55       | 0.28   |         |        |         |       |        |  |
|     |            |            |        |         |        |         |       |        |  |



#### **Contact definition**

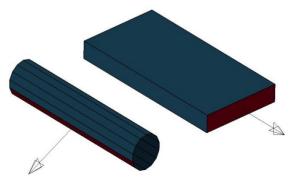

| *co | NTACT_AUT | OMATIC_SIN | GLE_SURFAC | E_MORTAR |        |        |        |        |
|-----|-----------|------------|------------|----------|--------|--------|--------|--------|
| \$# | ssid      | msid       | sstyp      | mstyp    | sboxid | mboxid | spr    | mpr    |
|     | 1000002   | 0          | 2          |          |        |        |        |        |
| \$# | fs        | fd         | dc         | VC       | vdc    | penchk | bt     | dt     |
| 0   | .200000   |            |            |          |        |        |        |        |
| \$# | sfs       | sfm        | sst        | mst      | sfst   | sfmt   | fsf    | vsf    |
|     |           |            |            |          |        |        |        |        |
| \$# | soft      | sofscl     | lcidab     | maxpar   | sbopt  | depth  | bsort  | frcfrq |
|     |           |            |            |          |        |        |        |        |
| \$# | penmax    | thkopt     | shlthk     | snlog    | isym   | i2d3d  | sldthk | sldstf |
|     |           |            |            |          |        |        |        |        |
| \$# | igap      | ignore     | dprfac     | dtstif   | unused | unused | flangl |        |
|     |           | 2          |            |          |        |        |        |        |
| \$  |           |            |            |          |        |        |        |        |
|     |           |            |            |          |        |        |        |        |

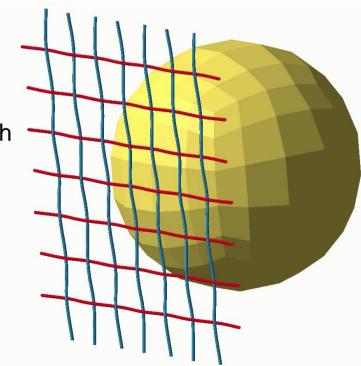


© Dynamore GmbH 2016

#### **Mortar Contact: brief overview**

- Penalty based segment to segment contact
  - Finite element consistent force
  - Continuous force displacement relation
- Parabolic constitutive law
  - Continuous stiffness displacement relation
- Relatively expensive
  - Intended for implicit analysis, slow in explicit analysis (at this time)
  - To the best of our knowledge best total implicit contact algorithm




© Dynamore GmbH 2016

#### **Mortar Contact: beams and shell edges**

- Flat edge contact always apply in automatic contact
- Beam lateral surfaces are discretized into segments with mortar contact applied to each segment
- From R9: Support "rolling beams"







1

#### Mortar Contact: stiffness and release



- $\alpha$  = stiffness scaling factor (SFS \* SLSFAC)
- $K_{\rm s}$  = stiffness modulus of slave segment
- d =penetratio n distance
- $\varepsilon = 0.03$

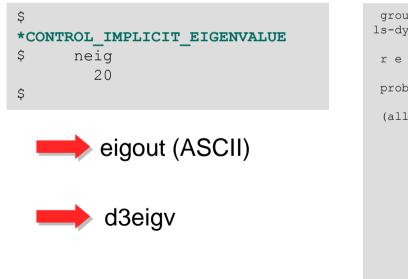
 $d_{c}$  = characteri stic length

$$f(x) = \begin{cases} \frac{1}{4}x^2 & x < \frac{1}{4\varepsilon} \\ \text{cubic function that depends on IGAP} & \frac{1}{4\varepsilon} \le x \end{cases}$$

0.8

1

0.2


- Contact is released if penetration is larger than half characteristic length *after* equilibrium
- Information of penetration may be requested



© Dynamore GmbH 2016

#### (1) Eigenvalue check

- Basically a check of the stiffness matrix
- only a linearized version of the model is considered
- Eigenvalues must be ≥ 0 ( if we want to run a static analysis EVs > 0)



| ground       |                  |               |              |              |
|--------------|------------------|---------------|--------------|--------------|
| s-dyna mpp.1 | 09095 d          | date 07/06/20 | 016          |              |
| result       | s of eig         | envalue       | analysi      | s:           |
| problem time | = 1.00000E-02    |               |              |              |
| (all frequen | cies de-shifted) |               |              |              |
|              |                  | frequer       | ncy          |              |
| MODE         | EIGENVALUE       | RADIANS       | CYCLES       | PERIOD       |
| 1            | -2.439537E-03    | 4.939167E-02  | 7.860929E-03 | 1.272114E+02 |
| 2            | -8.982204E-04    | 2.997032E-02  | 4.769925E-03 | 2.096469E+02 |
| 3            | -7.700314E-06    | 2.774944E-03  | 4.416460E-04 | 2.264257E+03 |
| 4            | 6.172319E-03     | 7.856411E-02  | 1.250387E-02 | 7.997527E+01 |
| 5            | 1.321770E+02     | 1.149683E+01  | 1.829777E+00 | 5.465148E-01 |
| 6            | 1.509247E+02     | 1.228514E+01  | 1.955241E+00 | 5.114460E-01 |
| 7            | 2.477678E+02     | 1.574064E+01  | 2.505201E+00 | 3.991696E-01 |
| 8            | 4.077650E+02     | 2.019319E+01  | 3.213846E+00 | 3.111536E-01 |
|              |                  |               |              |              |




© Dynamore GmbH 2016

## (1) Eigenvalue check

Example of first eigen modes

≈0Hz eigen mode



#### ≈ 0Hz eigen mode





## (1) Model modifications:

- Removed unsupported rotation d-o-f of wheels by adding small frictional moment to the wheel bearings with \*CONSTRAINT\_JOINT\_STIFFNESS
- Removed unsupported rotation d-o-f steering linkage by adding small frictional moment to the wheel bearings with \*CONSTRAINT\_JOINT\_STIFFNESS
- Fixed some of the engine parts properly



© Dynamore GmbH 2016

## (1) Eigenvalue final check

Lowest eigen modes after optimization

1.3Hz eigen mode



2.3Hz eigen mode



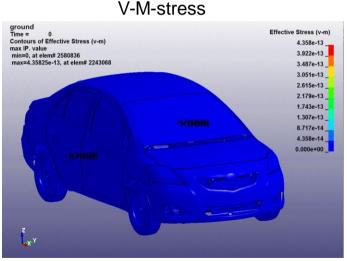


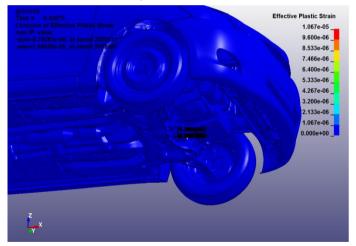
## (2) No-load run

- All definitions in the model are considered
- For a well defined model model this means:



- In case of slow convergence there might be
  - Still penetrations
  - Bad defined materials


• ...




© Dynamore GmbH 2016

## (2) No-load run

Visualize stresses, plastic strains, residual forces, …





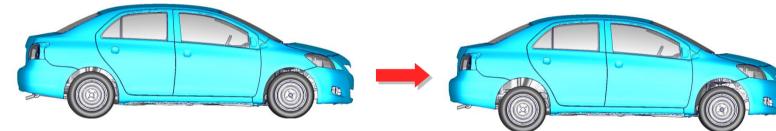
plastic strains

 Here: LS-DYNA struggles with rubber bearing material definition (Blatz/Ko rubber) replaced by \*MAT\_ELASTIC with corresponding parameters



© Dynamore GmbH 2016

## (3) Small test load


- Final quality check for the model
- Expect plausible results
- Expect "Normal Termination"



© Dynamore GmbH 2016

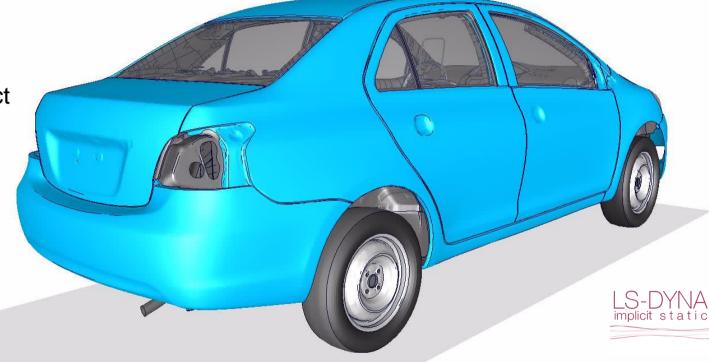
#### Shock absorber loading setup

Generated the geometry of an unloaded under-carriage



Added a rigid ground model with

| *C( |                 | TOMATIC_SUR      |            | RFACE_MORT | AR_ID  |        |     |     |
|-----|-----------------|------------------|------------|------------|--------|--------|-----|-----|
| \$# | ssid<br>2000008 | msid<br>10000001 | sstyp<br>2 | mstyp<br>3 | sboxid | mboxid | spr | mpr |
| \$# | fs<br>0.100000  | fd               | dc         | VC         | vdc    | penchk | bt  | dt  |
| \$# | sfs             | sfm              | sst        | mst        | sfst   | sfmt   | fsf | vsf |




© Dynamore GmbH 2016

#### **Static shock absorber loading**

three load steps

- 1) inflate tires
- 2) Initiating contact
- 3) gravity load





© Dynamore GmbH 2016

#### **Static shock absorber loading**

Solution in 73 steps 5.5 hours on 16cores

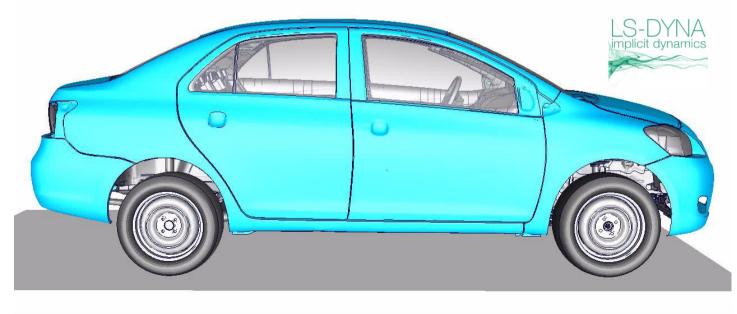




## **Dynamic shock absorber loading setup**

Added ground with

| *CON |        | TOMATIC_SUR | FACE_TO_SUE | RFACE_MORT | AR_ID  |        |     |     |
|------|--------|-------------|-------------|------------|--------|--------|-----|-----|
|      | IOOt   | ires2ground |             |            |        |        |     |     |
| \$#  | ssid   | msid        | sstyp       | mstyp      | sboxid | mboxid | spr | mpr |
| 2    | 800000 | 10000001    | 2           | 3          |        |        |     |     |
| \$#  | fs     | fd          | dc          | VC         | vdc    | penchk | bt  | dt  |
| Ο.   | 100000 |             |             |            |        | -      |     |     |
| \$#  | sfs    | sfm         | sst         | mst        | sfst   | sfmt   | fsf | vsf |
|      |        |             |             |            |        |        |     |     |
|      |        |             |             |            |        |        |     |     |

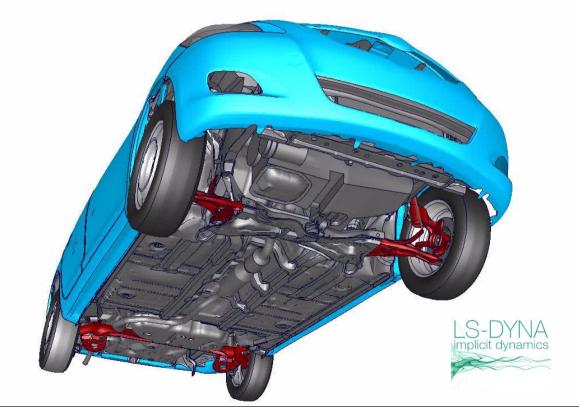

Added implicit dynamics control card

| *C0 | NTROL_IMPI | LICIT_DYNAM | IICS |
|-----|------------|-------------|------|
| \$  | imass      | gamma       | beta |
|     | 1          | 0.55        | 0.28 |

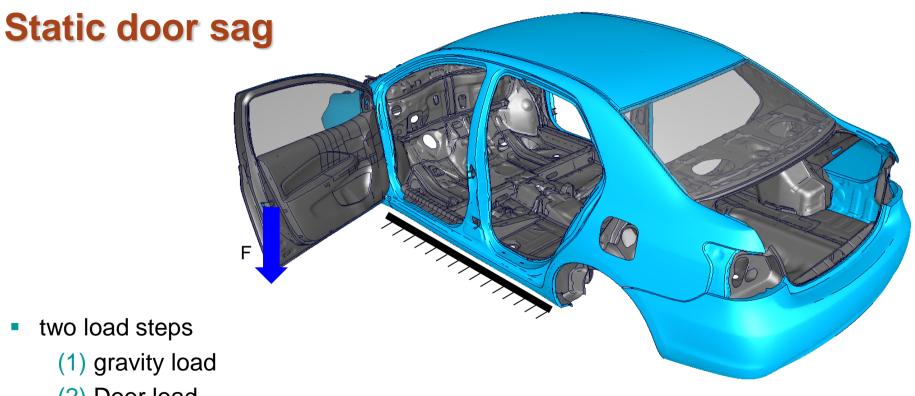


## **Dynamic shock absorber loading**

- 3 seconds simulation time
- Slight numerical damping
- 1) inflate tires
- 2) gravity load







© Dynamore GmbH 2016

#### **Dynamic shock absorber loading**

Solution in 103 steps 7.5 hours on 16cores







(1) gravity load (2) Door load

two load steps

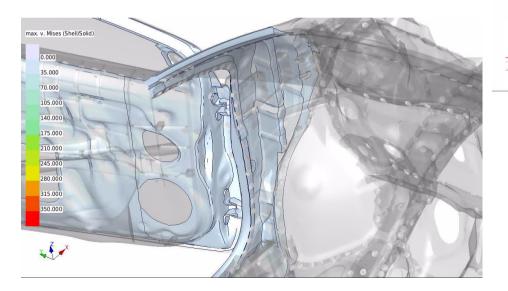


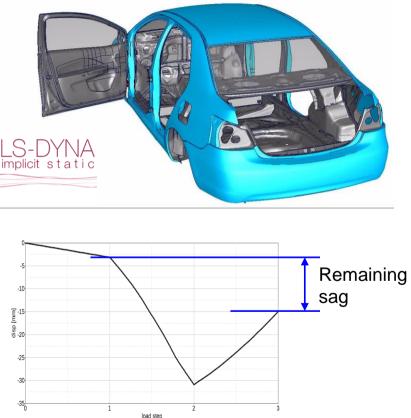
© Dynamore GmbH 2016

#### Static door sag: modifications

- Removed non-necessary parts of the model
- Loadcase definitions
- Local mesh refinement
- Hinge brackets with solid elements






© Dynamore GmbH 2016

## **Static door sag**

#### Solution in 94 steps (conservative) 2 h 50min on 16cores





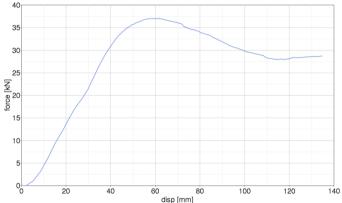


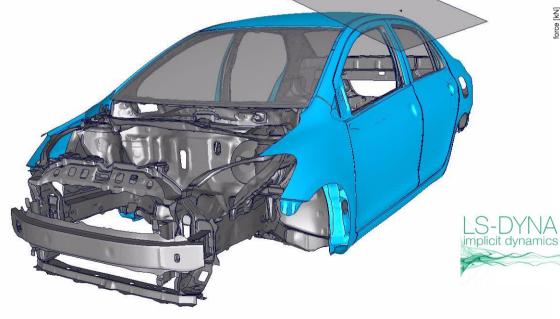
© Dynamore GmbH 2016

disp

#### **Roof crush**

- Removed non-necessary parts of the model
- Impactor with prescribed motion
- Applying load within 2 sec (Termination time 2.2 sec)


© Dynamore GmbH 2016


MOR

**NA** 

## **Roof crush**

Takes about 20h on 10cores







### Remarks

- Material definitions and connection modelling is not on most OEMs state-ofthe-art level. However, it has on a quite detailed level of modeling. For the investigations of this project all required parts and model functionality was present in the baseline model.
- Model size is adequate but not as large as OEMs current models (up to 7mio elements)
- Conversion process may look straight forward but in deed it is not.



#### > Intro

#### R9 Solver

Walkthrough: NCAC Toyota Yaris model conversion to implicit

#### LS-DYNA implicit with AVX2

Convergence behavior monitoring

#### Summary

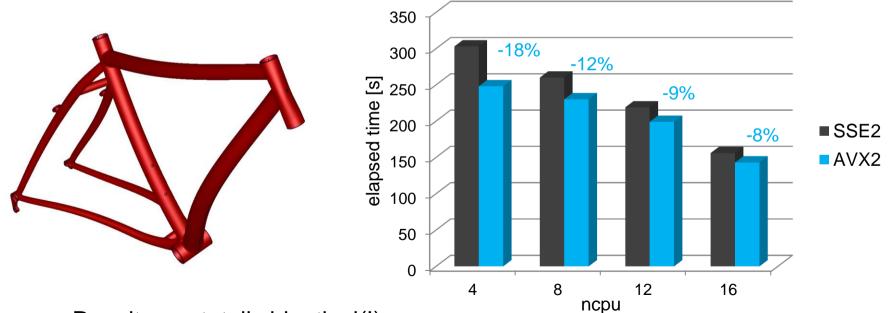


### **Advanced Vector eXtensions**

- Extensions to the x86 instruction set architecture
- Introduced 2013 with the Haswell processor generation
- Includes for example FMA3: solves

 $(A^*B)+C=D$ 

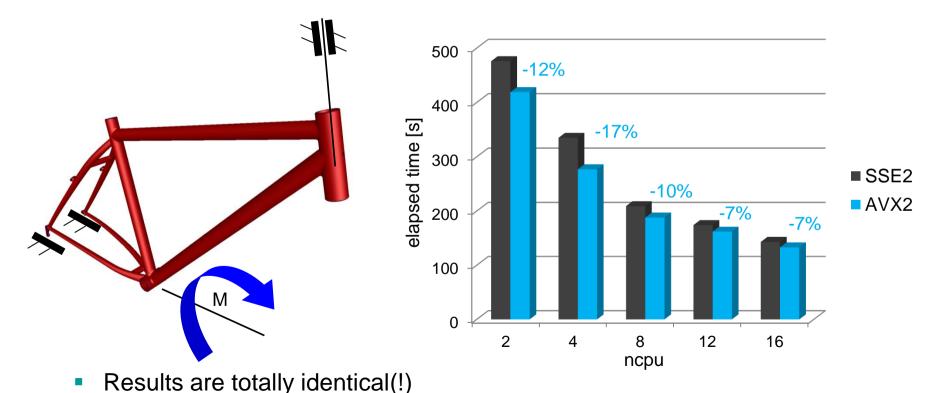
in a single CPU-cycle


 AMD's counterpart: Carrizo with Excavator microarchitecutre (Released end of 2015)

ls-dyna\_mpp\_d\_R9\_107411\_x64\_redhat54\_ifort131\_sse2\_platformmpi ls-dyna\_mpp\_d\_R9\_107411\_x64\_redhat54\_ifort131\_avx2\_platformmpi






## SSE2 vs AVX2: Eigenvalue analysis simple model



Results are totally identical(!)



### SSE2 vs AVX2: transient analysis simple model

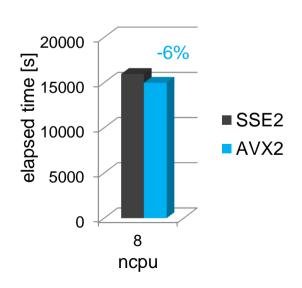


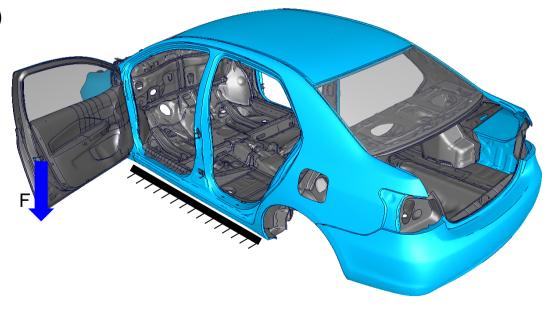


## SSE2 vs AVX2: transient analysis HPM settling

- Benchmark on 8 cores
- Results have slight differences (too??) loose tolerances
- Different steps during solution




## Implicit with AVX2




© Dynamore GmbH 2016

## SSE2 vs AVX2: door sag

- Benchmark on 8 cores
- Results are totally identical(!)







- > Intro
- R9 Solver
- > Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring
- Summary

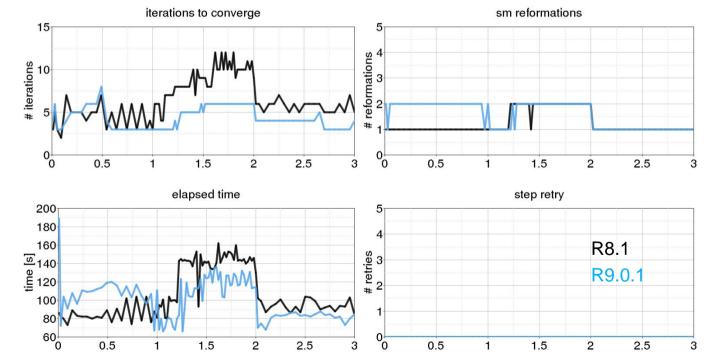
### **DYNAtool: check-convergence**



© Dynamore GmbH 2016

### **Providing convergence related information**

- Included in the DYNA-tools package
- Greps information about convergence behavior form d3hsp
- Prints out table view of information like interations, retry, ...
- Generates csv-file for postprocessing with EXCEL, HG, …


| 2<br>3<br>5<br>39<br>40<br>41<br>42<br>43<br>44 |           | 2.2400E+03<br>2.3482E+03                                                                                     |                | 1.5849<br>2.5119<br>3.9811<br>6.3091<br>271.8000<br>430.9000<br>17.5000<br>92.8000 |                                                        | 2<br>2<br>12<br>7                                              |                                                                      | 0<br>1<br>0<br>3<br>5                                                          |                                                                                          | 0<br>0<br>0                                                                                  |                                                                                                                                                                                                                                                                       | 13<br>100<br>41                                                                                                                                                                                                                                                                                                                                  |                                              |
|-------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 3<br>5<br>39<br>40<br>41<br>42<br>43<br>44      |           | 5.0968E+00<br>9.0779E+00<br>1.5387E+01<br>1.9825E+03<br>2.0000E+03<br>2.2400E+03<br>2.2400E+03<br>2.3482E+03 |                | 2.5119<br>3.9811<br>6.3091<br>271.8000<br>430.9000<br>17.5000<br>92.8000           |                                                        | 2<br>12<br>7<br>16<br>37<br>23                                 |                                                                      | 0<br>1<br>0<br>3<br>5                                                          |                                                                                          | 0<br>0<br>0<br>0                                                                             |                                                                                                                                                                                                                                                                       | 13<br>100<br>41<br>112                                                                                                                                                                                                                                                                                                                           |                                              |
| 4<br>5<br>39<br>40<br>41<br>42<br>43<br>44      |           | 9.0779E+00<br>1.5387E+01<br>1.5516E+03<br>1.9825E+03<br>2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03 |                | 3.9811<br>6.3091<br>271.8000<br>430.9000<br>17.5000<br>92.8000                     |                                                        | 12<br>7<br>16<br>37<br>23                                      |                                                                      | 1<br>0<br>3<br>5                                                               | <br> <br> <br>                                                                           | 0<br>0<br>0                                                                                  |                                                                                                                                                                                                                                                                       | 100<br>41<br>112                                                                                                                                                                                                                                                                                                                                 |                                              |
| 5<br>39<br>40<br>41<br>42<br>43<br>44           |           | 1.5387E+01<br>1.5516E+03<br>1.9825E+03<br>2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03               |                | 6.3091<br>271.8000<br>430.9000<br>17.5000<br>92.8000                               | <br> <br> <br>                                         | 7<br>16<br>37<br>23                                            |                                                                      | 0<br>3<br>5                                                                    | <br> <br>                                                                                | 0                                                                                            | <br> <br>                                                                                                                                                                                                                                                             | 41<br>112                                                                                                                                                                                                                                                                                                                                        |                                              |
| 39<br>40<br>41<br>42<br>43<br>44                |           | 1.5516E+03<br>1.9825E+03<br>2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03                             |                | 271.8000<br>430.9000<br>17.5000<br>92.8000                                         | <br> <br>                                              | 16<br>37<br>23                                                 | I<br>I<br>I                                                          | 3<br>5                                                                         | <br>                                                                                     | 0                                                                                            | 1                                                                                                                                                                                                                                                                     | 112                                                                                                                                                                                                                                                                                                                                              | <br> <br>                                    |
| 40<br>41<br>42<br>43<br>44                      |           | 1.9825E+03<br>2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03                                           |                | 430.9000<br>17.5000<br>92.8000                                                     | I<br>I                                                 | 37<br>23                                                       | i<br>I                                                               | 5                                                                              | Ì                                                                                        | 0                                                                                            | i                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |                                              |
| 40<br>41<br>42<br>43<br>44                      |           | 1.9825E+03<br>2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03                                           |                | 430.9000<br>17.5000<br>92.8000                                                     | I<br>I                                                 | 37<br>23                                                       | i<br>I                                                               | 5                                                                              | Ì                                                                                        | 0                                                                                            | i                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  | 1                                            |
| 41<br>42<br>43<br>44                            |           | 2.0000E+03<br>2.0928E+03<br>2.2400E+03<br>2.3482E+03                                                         | <br> <br>      | 17.5000<br>92.8000                                                                 |                                                        | 23                                                             | i                                                                    |                                                                                | ÷                                                                                        | -                                                                                            |                                                                                                                                                                                                                                                                       | 247                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 42<br>43<br>44                                  | <br> <br> | 2.0928E+03<br>2.2400E+03<br>2.3482E+03                                                                       | i<br>I         | 92.8000                                                                            |                                                        |                                                                |                                                                      | 2                                                                              | 1                                                                                        | 0                                                                                            | 1                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  |                                              |
| 43<br>44                                        | i<br>I    | 2.2400E+03<br>2.3482E+03                                                                                     | i              |                                                                                    | 1                                                      | 14                                                             | 1                                                                    |                                                                                |                                                                                          | 0                                                                                            |                                                                                                                                                                                                                                                                       | 144                                                                                                                                                                                                                                                                                                                                              |                                              |
| 44                                              | i         | 2.3482E+03                                                                                                   |                | 147.2000                                                                           |                                                        |                                                                |                                                                      | 1                                                                              | 1                                                                                        | 2                                                                                            | 1                                                                                                                                                                                                                                                                     | 209                                                                                                                                                                                                                                                                                                                                              | 1                                            |
|                                                 |           |                                                                                                              |                |                                                                                    | 1                                                      | 24                                                             | 1                                                                    | 2                                                                              | 1                                                                                        | 0                                                                                            | 1                                                                                                                                                                                                                                                                     | 763                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 15                                              | 1         |                                                                                                              |                | 108.2000                                                                           | 1                                                      | 26                                                             | 1                                                                    | 2                                                                              | 1                                                                                        | 1                                                                                            | 1                                                                                                                                                                                                                                                                     | 588                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| чJ                                              |           | 2.4278E+03                                                                                                   |                | 79.6000                                                                            | 1                                                      | 30                                                             | 1                                                                    | 2                                                                              | 1                                                                                        | 1                                                                                            | 1                                                                                                                                                                                                                                                                     | 506                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 46                                              | 1         | 2.5540E+03                                                                                                   | 1              | 126.2000                                                                           | 1                                                      | 39                                                             | 1                                                                    | 3                                                                              | 1                                                                                        | 0                                                                                            | Т                                                                                                                                                                                                                                                                     | 917                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 47                                              | 1         | 2.6802E+03                                                                                                   | 1              | 126.2000                                                                           | 1                                                      | 26                                                             | 1                                                                    | 2                                                                              | 1                                                                                        | 0                                                                                            | Т                                                                                                                                                                                                                                                                     | 671                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 48                                              | 1         | 2.7233E+03                                                                                                   | 1              | 43.1000                                                                            | 1                                                      | 30                                                             | 1                                                                    | 2                                                                              | 1                                                                                        | 2                                                                                            | Т                                                                                                                                                                                                                                                                     | 246                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 49                                              | 1         | 2.7550E+03                                                                                                   |                | 31.7000                                                                            | 1                                                      | 59                                                             | 1                                                                    | 5                                                                              | 1                                                                                        | 1                                                                                            | Т                                                                                                                                                                                                                                                                     | 428                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 50                                              | Т         | 2.7709E+03                                                                                                   | Т              | 15.9000                                                                            | 1                                                      | 84                                                             | Т                                                                    | 8                                                                              | L                                                                                        | 0                                                                                            | I                                                                                                                                                                                                                                                                     | 536                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 63                                              | I         | 3.7730E+03                                                                                                   | I              | 316.9000                                                                           | I                                                      | 2                                                              | I                                                                    | 0                                                                              | I                                                                                        | 0                                                                                            | T                                                                                                                                                                                                                                                                     | 17                                                                                                                                                                                                                                                                                                                                               | I                                            |
| 64                                              | 1         | 4.0000E+03                                                                                                   |                | 227.0000                                                                           | 1                                                      | 2                                                              | 1                                                                    | 0                                                                              | 1                                                                                        | 0                                                                                            | 1                                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                               | 1                                            |
| 65                                              | 1         | 4.5024E+03                                                                                                   | 1              | 502.4000                                                                           | 1                                                      | 28                                                             | 1                                                                    | 5                                                                              | 1                                                                                        | 0                                                                                            | T                                                                                                                                                                                                                                                                     | 189                                                                                                                                                                                                                                                                                                                                              | 1                                            |
| 66                                              |           | 5.0000E+03                                                                                                   |                | 497.6000                                                                           |                                                        | 15                                                             |                                                                      | 4                                                                              |                                                                                          | 0                                                                                            |                                                                                                                                                                                                                                                                       | 131                                                                                                                                                                                                                                                                                                                                              |                                              |
|                                                 |           |                                                                                                              |                |                                                                                    |                                                        | 1579                                                           |                                                                      | 202                                                                            |                                                                                          | 11                                                                                           |                                                                                                                                                                                                                                                                       | 14633                                                                                                                                                                                                                                                                                                                                            |                                              |
| 6                                               | 5         | 5                                                                                                            | 5   4.5024E+03 | 5   4.5024E+03                                                                     | 5   4.5024E+03   502.4000<br>6   5.0000E+03   497.6000 | 5   4.5024E+03   502.4000  <br>6   5.0000E+03   497.6000  <br> | 5   4.5024E+03   502.4000   28<br>6   5.0000E+03   497.6000   15<br> | 5   4.5024E+03   502.4000   28  <br>6   5.0000E+03   497.6000   15  <br>  1579 | 5   4.5024E+03   502.4000   28   5<br>6   5.0000E+03   497.6000   15   4<br>  1579   202 | 5   4.5024E+03   502.4000   28   5  <br>6   5.0000E+03   497.6000   15   4  <br>  1579   202 | 5               4.5024E+03               502.4000               28               5               0         6               5.0000E+03               497.6000               15               4               0                 1579               202               11 | 5               4.5024E+03               502.4000               28               5               0                 6               5.0000E+03               497.6000               15               4               0                         15               4               0                         1579               202               11 | 5   4.5024E+03   502.4000   28   5   0   189 |

### **DYNAtool: check-convergence**



© Dynamore GmbH 2016

#### **Example: Yaris door sag R8.1 vs R9.0.1**



R8.1 94 steps in 3h 7min R9.0.1 with IACC=1 94 steps in 2h 49min

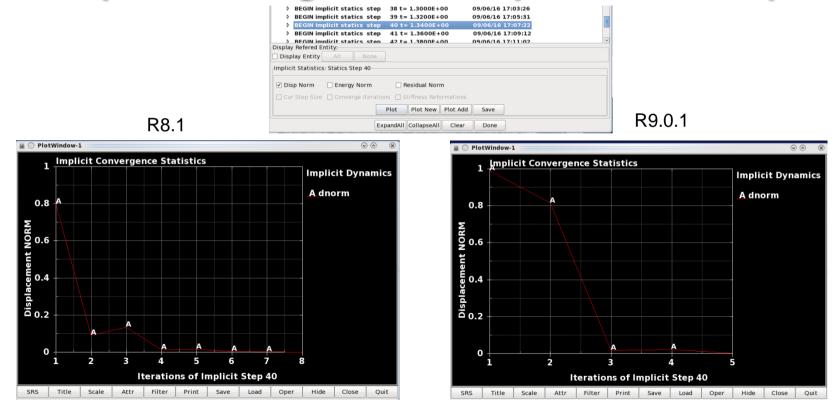
## LSPP d3hsp view



© Dynamore GmbH 2016

### **Providing convergence related information**

| (                       | File Misc. Vew Geometry FEM Application Settings Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| sentation<br>tent<br>s: | Image: Solution of the second seco | tigeo<br>V<br>urve<br>V<br>surf<br>olid  |
| n step's                | <ul> <li>&gt; summary of mass</li> <li>&gt; total mars = 0.33432795E+00</li> <li>&gt; 100 smallest timesteps</li> <li>&gt; calculation with mass scaling for minimum dt</li> <li>&gt; Implicit Statistics: Statics</li> <li>&gt; Timing information</li> <li></li> <li>C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eoTol<br>Mesh<br>Iodel                   |
| view                    | Display Entity All None<br>Implicit Statistics: Statics<br>Disp Norm Energy Norm Residual Norm<br>Cur Step Size Converge Iterations Stiffness Reformations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Post<br>MS<br>MS<br>afety<br>MS<br>afety |
|                         | Imput file name first       Imput file name f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |


- Organized presentation of d3hsp's content
- For implicit runs: Display of each step's norms
- MISC d3hsp view

### LSPP d3hsp view



© Dynamore GmbH 2016

#### Example: Viewing the development of a disp norm





#### > Intro

#### R9 Solver

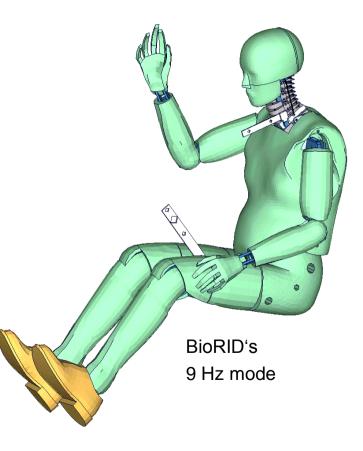
- Walkthrough: NCAC Toyota Yaris model conversion to implicit
- LS-DYNA implicit with AVX2
- Convergence behavior monitoring

#### Summary



## When you need information, help, inspiration, ...

- https://www.dynamore.se/en/resources/tips-and-tricks
  - Implicit starter kit including guideline
- Appendix P: LS-DYNA DRAFT Manual
  - A lot of information about LS-DYNA implicit
- www.dynasupport.com
  - Further guidelines, checklists
- www.dynaexamples.com/implicit
  - Application examples (free download)
  - Includes the Yaris models
- support@dynamore.de


## Summary



© Dynamore GmbH 2016

- LS-DYNA R9 solver is a successive enhancement. For running nonlinear implicit problems the R9 solver should be definitely the user first choice. Within the last years the LS-DYNA solver has grown to a powerful tool and it has reached a competitive grade.
- The successful conversion of the CCSA Yaris model demonstrates the capability of the implicit solver. The total effort of bringing the model to a "implicit ready" grade was manageable.
- On current hardware architectures implicit jobs turn around time can be reduced about 10% by using the avx2 executables of LS-DYNA. Considering robust models there is no effect on the results.
- With LSPPs d3hsp and the DYNATool check-convergence powerful tools can help user to learn more about the convergence behavior. A comparison between different versions of a model can be easily made.





# THANK YOU for listening