New features in LS-DYNA R7.1.1

- Newest release published in April 2014
- Robust production version is R6.1.2
- Presentation about major new solid mechanics features: Material Models, Element Technology, Metal Forming, Occupant Safety, Implicit, Discrete Element Method, General Enhancements

*MAT_FABRIC(034) bending stiffness

- Additional rotational resistance to model coating of the fabric
- More realistic behavior of coated fabrics, e.g. airbags, seat cover, folding tops, ...
- New parameters ECOAT, SCOAT, TCOAT on *MAT_FABRIC
- ...will be available for implicit in next release

*MAT_SPOTWELD(100)

New failure model OPT=11 for beam elements, where failure depends on loading direction via curves

OPT = 11 invokes a resultant force based failure criterion for beams. With corresponding load curves or tables LCT and LCC, resultant force at failure F_{fail} can be defined as function of loading direction γ (curve) or loading direction γ and effective strain rate $\dot{\varepsilon}$ (table):

 $F_{\text{fail}} = f(\gamma)$ or $F_{\text{fail}} = f(\gamma, \dot{\varepsilon})$

with the following definitions for loading direction (in degree) and effective strain rate:

*MAT_DRY_FABRIC(214) for high strength woven fabrics

Applications: propulsion engine containment, body armor, personal protections

*MAT_ADD_COHESIVE

- Usually cohesive elements (ELFORM = 19, 20, 21, and 22 of *SECTION_SOLID) can only be used with a small subset of materials (138, 184, 185, 186, 240).
- But with this additional keyword, a bigger amount of standard 3-d material models can be used (e.g. 15, 24, 41-50, 81, 103, 120, 123, 124, 168, 187, 188, 224, 225, 252, ...), that would only be available for solid elements in general.
- Therefore, assumptions of inhibited lateral expansion and in-plane shearing are used:

$$\begin{bmatrix} \delta_{1} \\ \delta_{2} \\ \delta_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dot{\delta}_{3}/(t+\delta_{3}) \\ 0 \\ \dot{\delta}_{2}/(t+\delta_{3}) \\ \dot{\delta}_{2}/(t+\delta_{3}) \\ \dot{\delta}_{1}/(t+\delta_{3}) \end{bmatrix} = c \begin{bmatrix} 0 \\ 0 \\ \dot{\delta}_{3}/(t+\delta_{3}) \\ 0 \\ \dot{\delta}_{2}/(t+\delta_{3}) \\ \dot{\delta}_{1}/(t+\delta_{3}) \end{bmatrix} = c \begin{bmatrix} \sigma_{zx} \\ \sigma_{yz} \\ \sigma_{zz} \\ \sigma_{zz} \end{bmatrix} = \begin{bmatrix} \sigma_{zx} \\ \sigma_{yz} \\ \sigma_{zz} \\ \sigma_{zz} \end{bmatrix}$$

displacements
in cohesive
element 3-dim. strain rates 3-dim. stresses delement

*MAT_TOUGHENED_ADHESIVE_POLYMER(252)

- New material model for crash optimized high-strength adhesives under combined shear and tensile loading
 - Drucker-Prager-Cap type plasticity + rate dependence + damage + failure
 - well suited for combination with *MAT_ADD_COHESIVE

*MAT_LAMINATED_FRACTURE_DAIMLER_PINHO(261) *MAT_LAMINATED_FRACTURE_DAIMLER_CAMANHO(262)

- Two new material models for laminated fiber-reinforced composites
- Based on physical models for each failure mode
- Nonlinear in-plane shear behavior

Implemented for thin shells, thick shells, and solid elements

*MAT_CWM(270): Computational Welding Mechanics

- Temperature created weld material
- Initial "ghost" material (very low stiffness) becomes weld material (elasto-plastic) during temperature increase
- Supports birth of material and annealing in addition to standard elastic-plastic thermal material properties

*MAT_POWDER(271) for compaction and sintering of cemented carbides

6.181e-01 6.103e-01 6.025e-01 5 947e-01 5.868e-01 5.790e-01 5.712e-01 5 634e-01 5.555e-01 5.477e-01 5.399e-01 5 320e-01 5.242e-01 5.164e-01 5.086e-01 5.007e-01 4.929e-01 4.851e-01 4.773e-01 4.694e-01 4.616e-01 4.538e-01 4.460e-01 4.381e-01 4.303e-01 4.225e-01 4.146e-01 4.068e-01 3.990e-01 3.912e-01

Relative density of wolframcarbide

Fringe Level 9 980e-01 9.960e-01 9.940e-01 9.920e-01 9 900e-01 9.881e-01 9.861e-01 9.841e-01 9.821e-01 9.801e-01 9.781e-01 9.761e-01 9 741e-01 9.721e-01 9.701e-01 9.682e-01 9.662e-01 9.6428-01 9.622e-01 9.602e-01 9.582e-01 9.562e-01 9.542e-01 9.522e-01 9.502e-01 9 487e-01 9.463e-01 9.443e-01 9.423e-01

Metal powder \rightarrow Solid component Intended to be used in two stages:

- 1. Pure mechanical compaction
- 2. Thermo-mechanical sintering

9.403e-01

*MAT_PAPER(274) for modeling of paperboard

- Orthotropic elastoplastic model based on Xia (2002) and Nygards (2009)
- For paperboard (e.g. packaging), a strongly heterogeneous material
- Creasing simulation with delamination of individual plies shown above
- Available for solid and shell elements
- Has shown to reproduce experimental data well

Stochastic Variations of Material Properties

- Permits random variations of the material yield strength and failure strain
- Options for the spatial variation:
 - Uniform scale factor of 1.0 everywhere
 - Uniform random distribution on a specified interval
 - Gaussian distribution
 - Specified probability distribution function
 - Specified cumulative distribution function

*MAT_name_STOCHASTIC Option

Available for materials:

- *MAT_ELASTIC_PLASTIC_HYDRO (10)
- *MAT_JOHNSON_COOK (15)
- *MAT_PIECEWISE_LINEAR_PLASTICITY (24)
- *MAT_PLASTICITY_WITH_DAMAGE_{OPTION} (81)
- *MAT_SIMPLIFIED_JOHNSON_COOK (98)

Available for solids, shells, and beams.

Yield surface and plastic strain to failure are scaled by *DEFINE_STOCHASTIC_VARIATION

• $\sigma_y = f(x)\sigma_y$ and $\bar{\epsilon}^p = g(x)\bar{\epsilon}^p$ where the f(x) and g(x) are the specified stochastic spatial variations.

More Material Model Updates

- Enable regularization curve LCREGD of *MAT_ADD_EROSION to be used with standard (non-GISSMO) failure criteria
- Added materials 103 and 187 for tetrahedron type 13
- New _MOISTURE option to *MAT_GENERAL_VISCOELASTIC(76) solids
- Prestressing and failure criteria to *MAT_CABLE_DISCRETE(71)
- New options to *MAT_LAMINATED_COMPOSITE_FABRIC(58): rate dependent strengths and failure strains, transverse shear damage
- New features for *MAT_SHAPE_MEMORY(30): curves/table for loading and unloading, strain rate dependence
- Added viscoplastic option to *MAT_ANISOTROPIC_ELASTIC_PLASTIC(157)

Element Technology

Higher order shell elements

- ELFORM=23: 8-noded quadrilateral
- ELFORM=24: 6-noded triangle
- SHL4_TO_SHL8 option on *ELEMENT_SHELL converts 4-noded element to 8-noded correspondence
- ESORT on *CONTROL_SHELL supported

Implicit capabilities and contacts supported

Cosserat point hexahedron

- Brick element using Cosserat Point Theory
- Implemented as solid element type 1 with hourglass type 10 (since R7.0.0)
- Hourglass is based on a total strain formulation
- Hourglass constitutive coefficients determined to get correct results for
 - Coupled bending and torsion
 - High order hourglass deformation
 - Skewed elements
- Seems to be a good alternative for rubber materials and coarse meshes
- **NEW:** 10 node Cosserat Point Theory tetrahedron is now available in R7.1.1

Cosserat 10-noded tetrahedron

- Accompanying the Cosserat Hexahedron, a 10-noded Cosserat Tetrahedron is available: ELFORM=16 + IHQ=10
- The Cosserat Point Elements (CPE) seem less mesh sensitive than other elements as examplified in the simulation below

Plane strain compression of an incompressible hyperelastic material, a rigid plate is used for the compression. The problem is solved with several different mesh topologies (10-noded tets) and the sensitivity to different mesh orientations are shown.

Fully integrated tetrahedron

CPE tetrahedron

Miscellaneuos Enhancements

- New pentahedra cohesive elements (*SECTION_SOLID: ELFORM=21 & 22)
 - ELFORM=21 is the pentahedra version of ELFORM=19
 - ELFORM=22 is the pentahedra version of ELFORM=20

- *CONTROL_SHELL: NFAIL1 and NFAIL4 supported in coupled thermo-mechanical simulations
 - Delete distorted elements instead of error termination
- New characteristic length calculation for higher order tets (ELFORM=16)
 - Length was originally assuming mid-side nodes at center between corner nodes and led to non-conservative time steps
- *CONTROL_SHELL: new option INTPERR
 - Terminate if *INITIAL_STRESS_SHELL and *SECTION_SHELL do not match up in terms of integration points

*CONTROL_REFINE_...

- Available for shells (_SHELL), solids (_SOLID), and ALE elements (_ALE)
- Adaptive refinement based on certain criteria (e.g. stress, energy, user-defined)
- Refinement possible during initialization or during the run
- Refinement can be reversed: coarsening
- Supports *CONTACT and *BOUNDARY_PRESCRIBED_MOTION

*CONTACT_ERODING_SINGLE_SURFACE

Isogeometric Analysis

- Isogeometric shells with NURBS: ELFORM=201 on *SECTION_SHELL
- Recent progress
 - Elements now run in MPP with excellent scaling.
 - Multi-patch analysis with thin shells by selectively adding rotational DOF at patch boundaries.
 - Added conventional mass-scaling for generalized shells
 - Improved post-processing capabilities
 - NURBS based contact algorithm (IGACTC on *CONTROL_CONTACT) enables better representation of real contact surface

NURBS-based contact: Example

Element Technology

Forming Related Features

*CONTROL_FORMING_INITIAL_THICKNESS

The initial thickness of Tailor rolled blank can vary along rolling direction
 To specify a varying thickness field across a sheet blank

*ELEMENT_LANCING

- Cuts an interior section of the metal without removing the section (e.g. for stress relief)
- Two types supported: instant and progressive
- Used together with *DEFINE_CURVE_TRIM_3
- Recent progress
 - Allow multiple curve intersections during lancing
 - Allow multiple lancing locations
 - Allow lancing boundary to be a closed loop

*CONTROL_FORMING_OUTPUT

- More friendly output control for D3PLOT and INTFOR
- Certain state deformations (e.g. "home position") can be important
- Distances for each flanging steels to the matching tools for d3plot output is specified in a curve ID

*CONTROL_FORMING_OUTPUT						*DEFINE CURVE
\$	1	2-	3-	4-	5	980
\$	CID	NOUT	TBEG	TEND	Y1/LCID	
	1116	10	&clstime	&endtime	-980	23.0
	1117	10	&clstime	&endtime	-980	19.0
	1118	10	&clstime	&endtime	-980	15.0
	1119	10	&clstime	&endtime	-980	13.5
*CONTROL_FORMING_OUTPUT_INTFOR						13.0
\$	1	2-	3-	4-	5	5.0
\$	CID	NOUT	TBEG	TEND	Y1/LCID	3.0
	1116	10	&clstime	&endtime	-980	3.0
	1117	10	&clstime	&endtime	-980	2.5
	1118	10	&clstime	&endtime	-980	2.0
	1119	10	&clstime	&endtime	-980	1.0

Occupant Safety

*ELEMENT_SEATBELT_PRETENSIONER

- Pull-in or belt load history of pretensioners could vary when different size of dummies are used, or pretensioners are activated at different times.
- Different pretensioner models are needed for different crash scenario.
- A pretension-energy based option is added. This allows a single pretensioner model to be used for various scenarios.
 - → New pretensioner types SBPRTY=8 (retractor pretensioner) and SBPRTY=9 (buckle or anchor pretensioner)

*AIRBAG/*MAT_FABRIC: Material-dependent birth times

- A single definition of birth time using *AIRBAG_REFERENCE_GEOMETRY _BIRTH is applied to all reference geometry definitions, i.e., all reference geometry definitions share the same birth time.
- In a model involving more than one airbag model, each airbag has its own firing time, and therefore needs its own birth time for its reference geometry definition.

RGBRTH in *MAT_FABRIC is used to define material dependent birth time.

Occupant Safety

*SENSOR_DEFINE_FUNCTION

- The value associated with this sensor is computed by performing mathematical calculations defined in *DEFINE_FUNCTION, with the information obtained from other sensors
- This could replace *SENSOR_DEFINE_CALC-MATH, which can only perform limited mathematical calculations
- Up to 15 *DEFINE_SENSORs can be referenced in defining a mathematical operation

*SENSOR_DEFINE_MISC

- Trace the value of a miscellaneous item, MTYPE .eq.
 - ANGLE: Angular accelerometer sensor tracing the angle between two lines
 - RETRACTOR: Seatbelt retractor payout rate
 - RIGIDBODY: Accelerometer sensor tracing the kinematics of a rigid body
 - TIME: Current analysis time
- This card replaces *SENSOR_DEFINE_ANGLE

*CONTACT: SOFT=2 and DEPTH=45

- Based on Splitting Pinball Method, Belytschko and Yeh, 1993
- Able to treat numerous contact situations in a consistent way, including those posing difficulties for node-to-segment contact.
- The new option is gaining popularity among users because of its robustness when handling complicated contact like folded airbag.

*CONTACT: SOFT=2 and DEPTH=45

Deployment of the folded bag using various number of CPUs

Occupant Safety

Implicit Analysis

Implicit Enhancements (1)

Much work on improving robustness and convergence characteristics of solver

- Convergence tolerances
- Line search (LSMTD=5)
- Contacts and smoothness
- R7.1.1 promising

- Debug informations:
 D3ITCTL on *CONTROL_IMPLICIT_SOLUTION
 + RESPLT on *DATABASE_EXTENT_BINARY
- Easy detection of non-converged "spots"

K.

Implicit Enhancements (2)

- New option IAUTO=2 on *CONTROL_IMPLICIT_AUTO to limit the mechanical time step by the active thermal time step
- New option IRATE=2 on *CONTROL_IMPLICIT_DYNAMICS to turn off rate effects in material models for both implicit and explicit

*CONTROL_IMPLICIT_BUCKLE

- Extend implicit buckling feature to allow for implicit problems using inertia relief
- Extend implicit buckling feature to allow for intermittent mode extraction: NMODE<0</p>

*CONTROL_DYNAMIC_RELAXATION

Extend implicit-explicit switching to allow explicit simulation for the dynamic relaxation phase and implicit for the transient phase

New keyword *CONTROL_IMPLICIT_MODAL_DYNAMIC

Mortar Contact

- Improved global search algorithm
 - Significant speed-up especially for single surface contact
- Support contact with lateral surface of beams
 - Beam cross section approximated as circular
- IGAP.GT.1 incorporates progressive stiffening for large penetrations
- MINFO on *CONTROL_OUTPUT activates output for debugging
 - Maximum penetration is reported in message file together with elements

General New Features

- New keyword card *CONTROL_REQUIRE_REVISION to prevent the model from being run in old versions of LS-DYNA
- New command line option "Idir=" for setting a "local" working directory
- *CONSTRAINED_BEARING to define a bearing between 2 nodes
 - This feature incorporates equations to simulate the effect of a ball bearing
- New keyword *DEFINE_TABLE_MATRIX
 - Alternative way of defining a table and the curves that the table references from a single unformatted text file, e.g., as saved from an Excel spreadsheet

Discrete-Element Method (DEM) in LS-DYNA

- Basic Ideas
 - Newtonian mechanics of a set of particles
 - Contact between particles
- Used to model
 - powders like toner, ...
 - granular matter like sand, ore, ...
 - large rocks, liquids
- Applications include
 - mining, mineral processing
 - agriculture and food handling and storage silos
 - chemical and civil Engineering

Discrete Element Method

mechanical contact

MM

 \mathbf{X}_1

liquid bridge

Filling of dry / wet sand and mud

Stable interaction of particles with deformable / rigid structures

*DEFINE_DE_BY_PART

- Define control parameters for spheres by part-ID
- Overrides the values set in *CONTROL_DISCRETE_ELEMENT

*DEFINE_DE_INJECTION

Automatic sphere generation through rectangular plane

*DEFINE_DE_TO_BEAM_COUPLING *DEFINE_DE_TO_SURFACE_COUPLING

Application of traction forces at the perimeter of the spheres
 Surface velocity for transportation belts

*DEFINE_SPH_DE_COUPLING

Penalty based SPH to SPH/DE contact

*ALE_COUPLING_NODAL_DRAG

Available soon (developer version)
 Penalty based ALE to DE contact

*DEFINE_DE_BOND

DE Bond Type I

- Simple links, truss or beam between spheres (extended Peridynamics)
- Manual elastic bond definition between spheres
- Bonds may be breakable or unbreakable
- Define maximum gap for bondage for clustered particles

*DEFINE_DE_HBOND

DE Bond Type II

- Heterogeneous links to model continuum mechanics (Meshless Local Petrov-Galerkin)
- Based on regular *MAT definitions
- Extended features for brittle failure, micro cracks, etc.
- Benchmark test: Tension bar
 - Goal: Reproduce elasto-plastic material behavior

Talk by Z. Han (LSTC), International LS-DYNA Conference, 8-10 June, Detroit

*INTERFACE_DE_HBOND

Define different failure models for the heterogeneous bonds between particles

- of the same material
- of different materials
- Application for heterogeneous bond model with interface
 - Failure of a reinforced concrete beam under 4-point bending
 - Possibility to distinguish between reinforcement bars and concrete

Conclusion: LS-DYNA R7.1.1

Many more developments and enhancements in other areas (ALE, EFG, SPH, Thermal, Frequency Domain, ...) and the multiphysics solvers (ICFD, CESE, EM, Chemistry)

Presentations at Infoday Multiphysics (March 2014): http://www.dynamore.de/en/news/news-en/2014/info-mp

Comprehensive list of enhancements and corrections on www.dynasupport.com/release-notes

R7.1 Keyword User's Manual can be downloaded from www.dynamore.de/en/downloads/manuals