

Development of an LS-DYNA model of a bicycle helmet by reverse engineering

<u>Ketuo Zhou</u>^{*a,c*}, Anja Wagner^{*a*}, Klaus Bauer^{*a*}, Felix Roesler^{*a*}, Shanshan Wu^{*a*}, Steffen Peldschus^{*b*}, Fabian Duddeck^{*c*}

^a Biomechanics Group, Institute of Legal Medicine, Munich University LMU
^b Campus Tuttlingen, Hochschule Furtwangen University
^c Technische Universität München, Munich, Germany

Numerical Models

The geometry model

The FE model

Virtual test Approaches

Full VT approach

Quote from A. Eggers, <u>imviter</u> 2012

Experimental Tests (quasi-static & dynamic)

4 5 Impact time (ms) 6

7

8

Further validation tests with multi-impact at the same sample

11. LS-DYNA FORUM 09.Oct.2012

2

3

1.5

Impact force (kN)

1

0.5

Material Card

EPS, the closed-cell polymeric foam :

- Three regimes in compressive stress-strain curve.
- Strain-rate dependent material, Mat_FU_CHANG_FOAM applied.
- Cowper-Symonds Law employed.
- Scaled stress-strain curves at differe

$$\frac{\sigma_d}{\sigma_s} = 1 + \left(\frac{\varepsilon}{C}\right)^{\frac{1}{p}}$$
 ate as the

input.

Outer plastic shell :

- Energy dispersion
- Little affect within different materials
- Low-cost material, Mat_ISOTROPIC_ELASTIC_PLASTIC applied.

Virtual test Approaches

Full VT approach

Quote from A. Eggers, <u>imviter</u> 2012

Problems and Discussion

Problems:

✓ The validated range of this model is considerably narrow. (Impact velocity from ~4 m/s to ~6 m/s)

 The behavior of the material model in the simulation can not fully represents the real behavior (they have different slopes at the initial phase of the loading curves)

✓ In some cases, the real tests are not so easy to represent (e.g., the 3rd validation test by back-forward impact)

Discussion about the material types:

✓ What is the sensitivity between the materials types, within the same stress-strain curve and the same strain-rate-dependency algorithm?

(Material Type : Mat_Piecewise_Linear_Plasticity, Mat_Modified_Crushable_Foam, Mat_Fu_Chang_Foam)

✓ What is the sensitivity in the solver's environment, e.g. processors / precisions / modes, within the absolutely same input?

Virtual test Approaches

Full VT approach

Quote from A. Eggers, <u>imviter</u> 2012

Outlook: Virtual tests

Development of an LS-DYNA model of a bicycle helmet by reverse engineering

<u>Ketuo Zhou</u>^{*a,c*}, Anja Wagner^{*a*}, Klaus Bauer^{*a*}, Felix Roesler^{*a*}, Shanshan Wu^{*a*}, Steffen Peldschus^{*b*}, Fabian Duddeck^{*c*}

^a Biomechanics Group, Institute of Legal Medicine, Munich University LMU
^b Campus Tuttlingen, Hochschule Furtwangen University
^c Technische Universität München, Munich, Germany

