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1 Introduction 

The design of structures and processes is one of the main challenges for engineers. The traditional 
method „try and error‟ (exploration of different variants) is due to an increasing number of design 
parameters not further possible. State of art is the application of various optimization methods, varying 
on the type of optimization task e.g. topology optimization, nonlinear parameter optimization or multi-
criteria optimization under consideration of different constraints. Common for the most methods is the 
non-applicability in an early design stage, because of a lack of information. Today‟s design process is 
characterized by division of work and decomposition due to the multidisciplinarity of design. Therefore 
it is required to have knowledge about the structure or process of interest. In an early design stage this 
information is a priori not available. In this contribution, a method is presented to get additional 
information by detecting permissible design spaces. These design spaces gives the engineer 
independent continuous ranges for each design parameter and allow the necessary decomposition for 
further design stages. The detection of permissible design spaces is feasible by a visual interpretation 
only two-dimensionally. For n-dimensional tasks the presented approach is a possibility to overcome 
this problem. The approach detects for existing data sets in higher dimension permissible design 
spaces with regard to design constraints. A two-dimensional example illustrates the principle of the 
procedure and an example from automotive industry shows its applicability.  
 

2 General approach 

The general aim of this approach is to detect permissible design spaces to describe continuous 

permissible sets X

inside the design space 

n
X    under consideration of equality and inequality 

design constraints ( :
n

j
g   and :

n

k
h   ) 

,

,

{ | {1, , }: ( ( )) 0

{1, , }: ( ( )) 0}.

n

g j g j

h k h k

X x X j a g x x

k a h x x

      

  






 (1) 

Due to the computational effort calculating the equality and inequality constraints (e.g. FEM computa-
tions) it is only possible to evaluate them at a few points x XH . Therefore the characterization of 
X


is only approximately possible. The (approximate) characterization of permissible design spaces 

can be done by a four step procedure, introduced in [7] and [11] and shown in Fig. 1. 

Step 1 Generate point set    |x x  xH = x, H . With the help of this point set the permissible 
space should be well characterized. 

xH  can be generated by any DoE procedure, or reuse of 
existing data sets for xH , e.g. from further designs, reliability or sensitivity investigations. This 
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possibility is one of the main benefits of the approach. The objective function  x maps the input 
variables to the result variables and could be e.g. a FEA.  
 

Step 2 Divide the point set H  into permissible  

,

,

{( , ( )) | , {1, , }: ( ( )) 0

{1, , }: ( ( )) 0}

g j g j

h k h k

x x x j a g x x

k a h x x

      

   

H H
 (2) 

and non-permissible  

,

,

{( , ( )) | , {1, , }: ( ( )) 0

{1, , }: ( ( )) 0}

g j g j

h k h k

x x x j a g x x

k a h x x

     

  

H H 


 (3) 

points.  
 
Step 3 Classify the point set   | , ( )x x x 

+ +

xH = H . This step is necessary, due to the inverse 
evaluation of the constraints non-connected permissible design spaces can occur. Information 
about the general behaviour of the design task will be provided and the computation of the 
permissible spaces is simplified. The classification can be accomplished by means of cluster 
analysis technologies, e. g. well established cluster algorithms: k-means [5] or fuzzy c-means [3]. 
 

Step 4 Detect permissible design spaces. Based on the classified point set 
x


H , the permissible 

design spaces X

are described approximately.  

 
The further parts of this contribution give some remarks about application of cluster analysis and an 
efficient method for detecting permissible spaces will be introduced.  
 

 
 
Fig. 1: General approach for detection of permissible design spaces in point sets  2 2

: H    
 

3 Identification of connected subspaces  

The identification of connected subspaces (step 3 in the general approach, see section 2) can be done 
by means of cluster analysis, which detects groups in data. A group is characterized by a high amount 
of similar properties in a local area. The point set x


H is partitioned into cn  subsets , {2, , }

i c
i nC  , 

called clusters. The set of all clusters is called a cluster configuration K . Based on x


H various cluster 

configurations K O  are possible 
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: { }xK


 
( H )O P . (4) 

P indicates a power set. 
 
Each cluster configuration K holds Eqs. (5) - (7). 

,i j i j  C C C C   (in pairs disjoint) (5) 

i  C  (non-empty) (6) 

cn

i x

i

   C H (reproduces 
x


H ) (7)  

In general, points inside a cluster iC should be as homogeneous as possible and points of different 
clusters , ,i j i jC C , should be as heterogeneous as possible. Homogeneity characterizes the 
similarity of points ,p q inside a cluster iC  and can be evaluated with distance measures 

n n d =   . Similarity increases, if the sum of distances between all points reaches a minimum 

,

( , ) min
ip q

d p q



C

. (8)  

A point set is heterogeneous, if the properties are as dissimilar as possible. The distances between all 
points should reach a maximum 

, ,

( , ) max
i jp q i j

d p q
  


C C

. (9)  

The computation of the best possible cluster configuration is an optimization task 

( ) minD K  , with (10)  

2: : ( , )
i i

i

K p

D K d p v
 

  
C C

O   . (11)  

D describes the distances  , id p   between points p  from a cluster iC and the empirical mean 
value i summed for all points inside the cluster iC  and for all clusters i .  

In order to accomplish the classification, which divides the point set into clusters three inputs are 
necessary, see e.g. [3], [5]: the number of clusters 

cn , the point of initialization and a distance 
measure. Due to the missing of a priori knowledge about the data this information cannot be provided. 
This means that a variation of parameters is necessary. The quality of resulting cluster configurations 
can be evaluated a posterior with measurements [12].  

 

4 Detection of permissible design spaces 

The results of Step 3 – evaluated cluster analysis – are point sets
1 2
, , ,

i
C C C  with an arbitrary struc-

ture in space. Based on these points permissible design spaces will be detected. For further usage of 
the design spaces it is necessary, to describe them through continuous spaces. In general it is possi-
ble to describe a point set 

i
KC  with a convex hull. A convex hull holds the condition 

1 2 1 2(1 ) , , , [0,1]i it x t x x x t      C C . (12)  

The computation of this hull is ambiguous and yields to interacting parameters. Another possibility is to 
detect hypercuboids to characterize the point set 

i
KC . This approach has the benefit of non-

interacting parameters, which results on the one hand in smaller permissible design spaces. But on 
the other hand it allows the separation of design parameters, which is necessary for an efficient further 
workflow. A hypercuboid is defined as 

1 1[ , ] [ , ] , , {1, , }n n j jH a b a b X a b j n       . (13)  
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The main property of a permissible hypercuboid is  

xH  H . (14)  

This part of the contribution shows different kinds of permissible spaces, gives an overview about 
possible approaches to detect hypercuboids and introduces a new approach to compute hypercuboids 
efficiently.  
 

4.1 Kinds of permissible spaces 

Due to the lack of information there are in general different possible shapes of permissible and non-

permissible spaces. Fig. 2 shows structures for 
2

X   , whereby   | , ( )x x x 
- -

xH = H . Com-

mon for engineering application are the properties of small corridors, holes and in higher dimensions a 

combination of them. Not preprocessed data can also have the property of non-sensitivity for some 

design variables. The occurrence of non-permissible spaces as patches is unusual for engineering 

data. Such a patch can easily be described by means of a bounding box of all non-permissible points 

and is further not considered.  
 

 
 
Fig. 2: Different shapes of permissible and non-permissible sets 
 

4.2 Approaches for detection of permissible hypercuboids 

The main idea of the presented approach is to detect independent, non-connected permissible spaces 
and describe them with hypercuboids. In general, the detection of permissible hypercuboids is split 
into two major phases. Phase I is the detection of a permissible hypercuboid inside the points of the 
cluster. Phase II tries to enlarge the permissible hypercuboid above the bounds of the relating cluster 
inside the design space. 
 

 
 
Fig. 2: Calculation of permissible hypercuboids 
 
The initial hypercuboid can be found as the bounding box B around the existing points 1 iipx x C, ,  
of the cluster 

i
C  

1,1 1, ,1 ,

min (min( , , ), ,min( , , ))
p n n pi i

i x x x x      (15)  
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max

1,1 1, ,1 ,(max( , , ), ,max( , , ))
i ii p n n px x x x     . (16)  

According to Eqs. (15) and (16) the bounding box can be written as 

min max min max

,1 ,1 , ,[ , ] [ , ]i i i i n i nB       . (17)  

In general this hypercuboid does not always hold the permissibility condition in Eq. (14). Therefore in 
phase I the bounding box is shrank in order to obtain a permissible hypercuboid iH . Additionally the 
computation can have the aim to find a permissible hypercuboid with maximal volume 

( ) max |i i i i xV H H B H     H  (18)  

or with the largest possible smallest interval 

, ,min( ) {1, , } max |i j i j i i i xb a j n H B H        H . (19)  

The second aim is applicable especially for small corridors.  
 
Two major types characterize the different methods to shrink the initial bounding box. On the one hand 
there are algorithms shrinking the bounding box step by step, delineated in Fig. 3. These algorithms 
have a huge dependence on the point set xH  and the regulation selecting the dimensions and 
bounds (the first step). Algorithms working like this are efficient for small datasets for a small number 
of dimensions only. For a higher number of dimensions and bigger datasets it is disadvantageous that 
the amount of loop-runs and therewith the evaluation of permissibility is very high. On the other hand 
there are algorithms which compute the permissible hypercuboid by a systematic sweep for possible 
hypercuboids. The sweeping can be done with three approaches. The first approach a) has all 
dimensions of all points k as degree of freedom and is applicable for a small point set for a small 
number of dimensions. The second approach b) – interval approach – splits each dimension in p 
intervals, all interval combinations are possible. This approach is versatile and will be explained in 
detail in the next section. The last approach c) only has all permissible points k as degree of freedom. 
This has the benefit of independency from the number of dimension. The accuracy decreases for the 
mentioned possibilities, but the number of possible combinations, see Eq. (20) decreases extremely. 
For the parameter n = 4, k = 50, p = 7 the following numbers of combinations are obtained 

13 6
11 1

) 1.95 10 ) 2.88 10 ) 1275
22 2

n n kk p
a b c

      
         

    
. (20)  

  
 
Fig. 3: Shrinkage algorithm           Fig. 4: Different approaches for systematic sweep 
 

The phase II is necessary to enable detecting of permissible design spaces beyond the bounding box 

B of the relating cluster iC . Especially for small corridors, as shown in Fig. 2 is this option essential. 

E.g. the aim of maximizing the volume can be written as 

( ) max |i i i xV H H X H     H . (21)  

This can result in overlapping hypercuboids, as shown in Fig. 2. 

 

Algorithm for shrink dimensionally 

until 
i xH  H  do: 

1. select dimension and 
bound due to regulations 

2. shrink selected bound of 
Hi in selected dimension 
to the nearest  
non-permissible point 
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4.3 Interval approach 

4.3.1 General formulation 

Basis of this approach is also a bounding box iB B of the relating cluster iC , Eq. (17). According to 
Eq. (13) the bounding box is the Cartesian product of the intervals iI  of all dimensions 

1 , [ , ], {1, , }i n i i iB I I I X I a b i n        . (22)  

The splitting of the intervals iI  into p subintervals is defined as 

,1 , , , , ,, [ , ], {1, , }i i i l i p i l i l i lI I I I I a b l p       . (23)  

This can be interpreted as a discretization of B. The bounding box is separated into p
d sub-

hypercuboids 

11, , , , {1, , }, {1, , }
j nk l j l n l jH I I I l p j n         (24)  

The bounding box can be written as 

1

dp

k

k

B H


 . (25)  

The idea of the interval approach is to compute all possible combinations Eq. (20) of the paling space 
of two subhypercuboids. This enables a general analysis of the point set and results in good 
permissible hypercuboids. The combined hypercuboid H  out of iH  and 

jH can be written as 

,1 ,1 ,1 ,1 , , , ,

, , , ,

[min{ , },max{ , }] [min{ , },max{ , }]

[min{ , },max{ , }], {1, }

i j i j i k j k i k j k

i n j n i n j n

H a a b b a a b b

a a b b k n

  

 
. (26)  

The most time consuming operation is the permissibility check of the hypercuboid .H  Therefore all 
subhypercuboids containing non-permissible points have to be computed. 

 | , {1, }d

i iH H i p    K H . (27)  

The hypercuboid H  is permissible, if  

H

H H


 
K

 . (28)  

Among all combinations, an optimal hypercuboid can be identified, that fulfils the aim of the 
computations (Eq. (18) or Eq. (19)) in the best manner. To reduce the computational effort for a high 
number of dimensions an intelligent preselection of subhypercuboids of interest is necessary. One 
method is the analysis of the subhypercuboids containing permissible points only  

 | , {1, , }d

i iH H i p    K H  . (29)  

But there is a dependency on the point set H . Another way of preselection is explained in section 

4.3.3. 

4.3.2 Numerical implementation 

Due to the high amount of subhypercuboids for a high number of dimensions it is not possible to store 
all in memory. The definition of a subhypercuboid as the Cartesian product of the intervals Eq. (24) 
enables to compute the identity (ID) of iH out of the intervals or vice versa, see Fig. (5). This allows a 
numerically efficient implementation with the use of positional notation system [6] to the base of the 
number of intervals p . Hence it is not necessary to store all subhypercuboids. The intervals (IV) are 
vectors of the general interval numbers. The calculation of the ID of iH  out of the intervals is 
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1

( )
n

n i

i

i

ID IV p 



  . (30)  

The calculation of the intervals out of the ID is 

1

mod ,

mod , , max{ | }

i
i

ID
i n

p

IV
IV

p
i n x k k x

p



  
  

 
  

   
      
  
   
  



. (31)  

Because of the computation of all combinations, the check for permissibility has to be done very often. 
The discretization of the initial bounding box into subhypercuboids allows to check the permissibility of 
the hypercuboid H  Eq. (28) resulting from the current combination Eq. (26) as 

|j jH H H    = K . (32)  

Due to the axis parallelism of both hypercuboids the proof of a zero intersection can numerical be 
treated as (under consideration of Eq. (13)) 

, , , ,max{ , }, min{ , }

{1, , }: .

l i l j l l i l j l

l l

a a a b b b

l n a b

 

  
 (33)  

If there exists at least one dimension l for all non-permissible subhypercuboids iH , holding this 
condition the hypercuboid iH  is permissible. 
 

4.3.3 Spherical enhancements 

As remarked in section 4.3.1 it can be efficient to preselect the subhypercuboids and reduce the 
number of possible combinations. One possibility of preselection is to take only the subhypercuboids 
inside a n-dimensional ball S  

{ | }nS x x r    (34)  

into account. Because of the huge difference between the hypervolumes of a normed hypercuboid and 

the inside hypersphere (see Fig. 6) the number of combinations of subhypercuboids decreases 

strongly.  

 

 

               
 
Fig. 5: Discretized hypercububoid (3, p=3)         Fig. 6: Comparison of hypervolumes 
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The set of subhypercuboids can be written as 

 | , {1, }d

i iH H S i p   K
. (35)  

This reduction of numerical effort is only applicable for higher dimensions. For small number of 
dimensions the not considered hypervolume is too large.  
 

5 Examples 

5.1 Analytical function 

In [8] the Michalewicz function Eq. (36) is used for performance evaluation of genetic algorithms. For 
visualization of the algorithms discussed in this contribution that function will be used two-
dimensionally (n=2, m=10), see Fig. 7. In general it could be solved manually. 

 
2

2

1

( ) sin( ) sin 0,

m
n

i
i i

i

i x
z x x x 







  
      

  
  (36) 

         

 
Fig. 7: Michalewicz function (two-dimensionally)  Fig. 8: Permissible design spaces for 0.4z    
 
The aim is to detect permissible design spaces with respect to the design constraint 0.4z   . 
Therefore 150 points H are generated with a DoE. These points are subdivided into 32 permissible  

 ( , ( )) | , 0.4x x x z

   H H  and 118 non-permissible  ( , ( )) | , 0.4x x x z


   H H  points. The 

clustering and evaluation of several cluster configurations of the permissible points leads to the best 
configuration: three independent clusters, see Fig. 8. Permissible design spaces, represented by 
hypercuboids are calculated for each cluster, with the aim to maximize the volume. These 
hypercuboids are limited to the bounds of the particular cluster (phase I). The possibility to connect 
and enlarge the hypercuboids (phase II) leads to better permissible design spaces, whereby the 
hypercuboid for cluster 1 is equal to that of cluster 2. The hypercuboid related to cluster 3 was 
enlarged. Summarizing, the detection of permissible design spaces results into two hypercuboid, 
shown in Fig. 8.  
 

5.2 Automotive design 

To demonstrate the capabilities of the presented procedure an eight-dimensional numerical function is 
considered. This function is an evaluation of US-NCAP rating, according to the overall Vehicle Safety 
Score (VSS) [1]. The results of the calculation are static stability factors (SSF) and the stars-evaluation 
for frontal, side and rollover tests. The result of interest for this study is the side combined star 

1 2 8( , , , )z f x x x  . (37) 

The input parameters relevant for the side combined star result are eight injury measures of 
passengers, e.g., abdomen force or rib deflection, listed in Fig. 9.  
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Fig. 9: Input parameters       Fig. 10: Convergence of DoEs 
 
The aim of the investigation is to find permissible design spaces holding 

*
5z  . For a better numerical 

stability, the not existing decimals of the star result are allowed. A first DoE with 10,000 sample points 
was computed inside the design space given in Fig. 9. This point set contains no result which fulfils 
the constraint, hence this demonstrates the high influence of dimensionality for this example. To 
overcome this, the DoE was repeated, with decreasing design spaces. The smaller design spaces can 
be calculated with an iterative application of the introduced approach. The success of the iteration can 
be seen for this example Fig. 10. The examples result is one permissible design space, see Figs. 11, 
12. The used visualization technology – parallel coordinate plot [4], allows a simultaneous visualization 
of the permissible design space for all design parameter. This overview enables the evaluation of the 
result and a more detailed understanding of the model behaviour. The volume of that design space is 

9

3 2.3 10DoEV    which is about 
9

3 5.75 10DoE DesignSpaceV V


   . The huge difference in volume between 
the initial design space and the permissible design space explains the requirement of the iterative 
application of the method. The design engineer has now the possibility to select the best value 
(dependent on other criteria‟s besides permissibility) for each design variable independent from all 
others, inside the detected ranges. This enables easy work sharing procedures for the more detailed 
design stages.  
 

       
 
Fig.11: Parallel coordinate plot of the permissible             Fig. 12: Permissible design space 
            hypercuboid (scaled to the initial design space) 
 

6 Summary 

The introduced approach for detecting permissible design spaces can be summarized by four main 
steps: 
1. Generate point set H 
2. Divide the point set H into permissible H

+
 and non-permissible points H

–
  

3. Classify the point set Hx
+
 

4. Detect of permissible design spaces Hi 

 

parameter range 

x1  399.0 … 715.5 
x2  0.0     … 4.13 
x3  0.0     … 486.4 
x4   0.2     … 16.7 
x5  0.5     … 0.7 
x6  3.9     … 4.9 
x7  1.7     … 466.9 
x8  1.6     … 4.0 
 

 

 

 

DoE z > 5* 

1. 0.00 % 
2. 0.92 % 
3. 21.60 % 
4. 99.48 % 
(4. only for validation) 
 

 

 

input parameter     design space 

sidepole front seat HIC36 [-]   0 … 2000 
sidepole front seat Pelvis Force [kN]  0 … 50 
sideMDB front seat HIC36 [-]   0 … 1000 
sideMDB front seat Max Rib Deflection [mm] 0 … 500 
sideMDB front seat Abdomen Force [kN]  0 … 20 
sideMDB front seat Pubic Force [kN]  0 … 20 
sideMDB rear seat HIC36 [-]   0 … 1000 
sideMDB rear seat Pelvis Force [kN]  0 … 20 
 



11. LS-DYNA Forum, Ulm, 2012 

 

 
© 2012 Copyright by DYNAmore GmbH 

This procedure can handle any kind of data, which makes it versatile. The classification is realized by 
cluster algorithms. Due to the preconditions for cluster algorithms an evaluation of several cluster 
configurations selects the best ones and reduces the numerical effort for computing the permissible 
design space. In this contribution different possibilities for detecting permissible hypercuboids are 
presented. The interval approach is introduced. The capability of the approach is demonstrated by two 
examples. The example in 5.2 and the spherical enhancement in section 4.3.3 show the influence of 
dimensionality. This effect exists due to the Curse of Dimensionality [2] and demonstrates the 
importance of reasonable selection of parameters and the research for sensitivity. Sensitivity analysis 
detects main influence parameter and can reduce the influence of dimensionality. 
 
Common for all engineering application is uncertainty for parameters and models. The approach is 
extensible for uncertain data [10]. The uncertain data can be modelled with fuzziness, randomness or 
fuzzy randomness [9]. This extension would allow the consideration of further aims computing the 
permissible design space, as reliability or robustness. Furthermore the introduced procedure enables 
the consideration of static data only. For regarding time-dependent or other functional behaviour other 
algorithms for classification and detection of permissible hypercuboids are necessary, but the general 
sequences are the same.  
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