
Implementation and Application of a 

new Plasticity Model in LS-DYNA 

including Lode Angle Dependence 

F.J.P.Reis 
Department of Mechanical Engineering, Faculty of 

Engineering, University of Porto 

F.X.C. Andrade 
(DYNAmore GmbH) 

11th GERMAN LS-DYNA FORUM 2012 



OUTLINE 

1. Motivation 

 Definition of the Lode angle and normalized third invariant 

 Materials with Lode angle dependent plasticity 

 Existing plasticity models with Lode angle dependency 

2.   New plasticity model 

 Base assumptions and desired features 

 Constitutive equations: yield function and flow rule 

 Graphic representation on the s1-s2 space 

 Numerical implementation 

3.   Numerical examples 

 Tensile stress states: notched and flat grooved specimens 

 Shear stress states: butterfly specimen 

 Compressive stress states: upset test 

4.   Final remarks 
 

F.J.P. Reis, F.X.C. Andrade, German LS-DYNA Forum 2012. 2 



1. Motivation 

Lode angle definition 

 

 

 

 

 

 

 

 

 

 

 

• Geometrically, the Lode Angle is the “smallest angle 

between the line of pure shear and the projection of the 

stress tensor on the deviatoric plane” (L.Malcher et al.) 
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• The Lode Angle 𝜃𝐿 is relatated with the normalized third 

deviatoric stress invariant, 𝜉 

 

𝜉 = cos 3𝜃𝐿 =
27

2

det⁡(𝒔)

𝜎𝑒𝑞
3 , 𝜉 = [−1,1] 

• Hereinafter, the normalized third deviatoric stress 

invariant, 𝜉, will be denoted as Lode Angle. 
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Taken from “Xue, L. (2007),Ductile Fracture 

Modeling – Theory, Experimental Investigation, and 

Numerical Verification, PhD thesis, Massachusetts 

Institute Technology, Cambridge, MA.” 

In LS-DYNA, the normalized third deviatoric stress 

invariant, 𝝃, is denoted as the “Lode Angle Parameter” 
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1. Motivation 

Lode Angle Definition, 𝝃 
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Stress Triaxiality 

Γ =
𝑝

𝜎𝑒𝑞
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Displacement 

von Mises Model 

Experimental Results 

Lode Angle Effect 

Aluminium alloys 

• Recent experimental analysis have proved that the Lode Angle have a considerable effect on the 

stress-plastic relation of some aluminium alloys (Y. Bai et al., Mirone et al, X. Gao et al.) 
 

• In contrast, they also concluded that the hydrostatic pressure has a negligible effect  
 



1. Motivation 
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Aluminium alloys 

• However, the effect of the Lode Angle is not constant. 
 

• It depends on the stress state! 
 

Stress State/Specimen 𝝃 Lode Angle Effect (according 

to experimental evidences) 

1. Tensile round bars 𝜉 = 1 N 

2. Compression round bars 𝜉 = −1 N 

3. Shear stress states 𝜉 = 0 Y 

4. Plane Strain Specimen - Traction 𝜉 = 0 Y 

5. Plane Strain Specimen – Compression 𝜉 = 0 Y 

5. Bi-axial tension 𝜉 = 1 N 

6. Bi-axial compression 𝜉 = −1 N 

The maximum Lode Angle effect takes place when 𝜉 = 0 



1. Motivation 

Tresca’s yield function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Φ = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛 − 𝜎𝑦 

 
Advantages: 

 

• It is a classical, well-established yield function 

 

 

Disadvantages: 

 

• The effects of the 3rd invariant are fixed 

 

• The yield function is non-continuous, making 

its numerical implementation more difficult 

(directional derivatives are needed!) 
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Bai & Wierzbicki’s yield function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ = 𝜎𝑒𝑞 − 𝜎𝑦 1 − cΓ Γ − Γ0  𝑐𝜃
𝑠

+ 𝑐𝜃
𝑎𝑥 − 𝑐𝜃

𝑠 𝜙 −
𝜙𝑚+1

𝑚 + 1
  

Advantages: 

 

• The convexity of the yield function has to be 

ensured by a numerical parameter 

 
 

Disadvantages: 

 

• 7 material parameters plus a hardening curve 

are required for calibration 
 

• Isochoric plasticity is questionable 
 

• Complex to implement 

1. Motivation 

Taken from “Bai, Y. (2008), Effect of loading history on necking and 

fracture, PhD thesis, Massachusetts Institute Technology, 

Cambridge, MA.” 
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Hosford’s yield function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φ = 𝜎1 − 𝜎2
𝑚 + 𝜎2 − 𝜎3

𝑚

+ 𝜎3 − 𝜎1
𝑚 − 2𝜎𝑦

𝑚 

 
Advantages: 

 

• It is available in LS-DYNA through MAT_36 if 

parameters are set to be isotropic 
 

 

Disadvantages: 

 

• Effect of 3rd invariant can be controlled by the 

exponent “m”, but the physical meaning of “m” 

is somewhat difficult to grasp 

 

• Formulated in principal stress space 

1. Motivation 
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Gao’s yield function 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝑎1 = 0, 𝑏1 − 60.75 and 𝑐1 = 1.07 

 

 

Φ = c1 𝑎1𝐼1
6 + 27𝐽2

3 + 𝑏1𝐽3
2 1/6 − 𝜎𝑦 

𝑎1⁡and⁡𝑏1 are material parameters and 𝑐1 is a function of 

𝑎1⁡and⁡𝑏1 

 

Advantages: 

 

• It is possible to control the effect of the third 

invariant 

 

Disadvantages: 

 

• In addition to the hardening curve, 6 more 

material parameters are required which have 

no physical meaning 
 

• Non-associated model 
 

• The yield function may be non-convex! 

1. Motivation 

10 F.J.P. Reis, F.X.C. Andrade, German LS-DYNA Forum 2012. 



2. New Plasticity Model 

Desired features 
 

• Starting from classical J2 von Mises plasticity (*MAT_24) 

• J2 plasticity should be easily recovered if material is not dependent on 𝜉 

• Easiness of calibration (as less new parameters as possible) 

• Dependency of 𝜉 should be simple to grasp 

 

Main assumptions for the new model 
 

• Material has a different yield stress under tensile and shear stress states 

• The dependency of the yield stress in respect to 𝜉 is assumed quadratic 
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2. New Plasticity Model 
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Proposed yield function 

Φ = 𝜎𝑒𝑞 + 𝜎𝑡 − 𝜎𝑠 1 − 𝜉2 − 𝜎𝑦 

Uniaxial Tensile 

𝜉 = 1 

Define 𝜎𝑡! 

Biaxial Tensile 

𝜉 = 1 

Pure Shear 

𝜉 = 0 

Define 𝜎𝑠! Parameters definition: 

1. Hardening Curve: 

The same as used in 

von Mises Model 

2. Tensile Yield Stress, 

𝜎𝑡. Determined through 

standard tensile test 

3. Shear Yield Stress, 

𝜎𝑠. Determined through 

a shear test 



2. New Plasticity Model 

Proposed yield function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Φ = 𝜎𝑒𝑞 + 𝜎𝑡 − 𝜎𝑠 1 − 𝜉2 − 𝜎𝑦 

Advantages: 
 

• Only one extra parameter in comparison 

to classical J2 plasticity (*MAT_24) 
 

• 𝜉-dependency is easier to grasp than 

other plasticity models 
 

• Only two physical tests are required for 

calibration: tensile and shear test 
 

• The yield function is always continuous 
 

• The model is relatively simple to 

implement 
 

 

Disadvantage: 
 

• Yield surface may be non-convex! 
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2. New Plasticity Model 

Φ = 𝜎𝑒𝑞 + 𝜎𝑡 − 𝜎𝑠 1 − 𝜉2 − 𝜎𝑦 

Non-convexity may arise for 

large differences between st 

and ss! 
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2. New Constitutive Model: 

Constitutive relations 

Yield function 

 

Φ = 𝜎𝑒𝑞 + 𝜎𝑡 − 𝜎𝑠 . 1 − 𝜉2 − 𝜎𝑦 = 0 

 

Associative plastic flow 

 

𝜺 𝑝 = 𝛾 
𝜕Φ

𝜕𝝈
=

3

2

𝒔

𝒔
− 2. 𝜎𝑡 − 𝜎𝑠 𝜉

𝜕𝜉

𝜕𝝈
 

 

Plastic work equivalence 

 

𝜎𝑒𝑞. 𝜀  
𝑝 = 𝝈: 𝜺 𝑝 
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2. New Constitutive Model: 

Numerical implementation 

The following system of equations has to be solved: 

 

𝑟𝑒𝑠𝒔 = 𝒔𝑛+1 − 2𝐺𝜺𝑛+1
𝑒⁡𝑇𝑟𝑖𝑎𝑙 + 2𝐺Δ𝛾

3

2

𝒔𝑛+1

𝒔𝑛+1
− 2. 𝜎𝑡 − 𝜎𝑠 𝜉𝑛+1

𝜕𝜉𝑛+1

𝜕𝝈𝑛+1

𝑟𝑒𝑠𝜺𝑝 = 𝜀 𝑝𝑛+1 − 𝜀 𝑝𝑛 −
𝜎𝑛+1: Δ𝜺𝑝

𝜎𝑦 𝜀 𝑝
𝑛+1

𝑟𝑒𝑠Δγ = 𝜎𝑒𝑞𝑛+1
+ 𝜎𝑡 − 𝜎𝑠 . 1 − 𝜉𝑛+1

2 − 𝜎𝑦 𝜀 𝑝𝑛+1

 

 

The consistent tangent operator (implicit analysis) reads: 

 

𝑫𝑒𝑝 =
𝜕𝝈𝑛+1

𝜕𝜺𝑛+1
𝑒⁡𝑇𝑟𝑖𝑎𝑙

= 2𝐺 𝑨 −1: 𝑰4 −
1

3
𝑰2 ⊗ 𝑰2 + 𝐾𝑰2 ⊗ 𝑰2 
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3. Numerical Results 

Tensile Stress States 

Smooth bar  
(Specimen used to calibrate the hardening curve) 

 

 

 

 

 

 

 
• Only a quarter was modelled 

• 5760 Axisymmetric quadratic 

elements 

• 𝐷 = 9𝑚𝑚 

• 5% reduction of section to trigger 

localization 

Flat grooved specimen 

 

 

 

 

 

 

 

 

 
• Only a quarter was modelled 

• 420 Axisymmetric quadratic 

elements 

• Displacement Prescribed, 

𝑢 = 0.4𝑚𝑚 

• 𝐷 = 5𝑚𝑚, 𝑅𝑛𝑜𝑡𝑐ℎ𝑒𝑑 = 1.59𝑚𝑚, 

𝑙 = 25𝑚𝑚, ℎ = 50𝑚𝑚 

Butterfly specimen 

 

 

 

 

 

 

 
• 3392 quadratic Hexahedral 

elements 

• Displacement Prescribed, 

𝑢 = 1𝑚𝑚 

• Geometry taken from “Bai, Y. 

(2008), Effect of loading history 

on necking and fracture, PhD 

thesis, Massachusetts Institute 

Technology, Cambridge, MA.” 
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Material Properties 

Young Modulus 𝐸 = 71.15⁡𝐺𝑃𝑎 

Poisson’s Ration 𝑣 = 0.3 

Tensile yield stress 𝜎𝑡 = 370⁡𝑀𝑃𝑎 



3. Numerical Results 

Tensile Stress States: Smooth Bar 
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Von Mises New Model, 𝝈𝒔 = 𝟑𝟒𝟎 New Model, 𝝈𝒔 = 𝟑𝟐𝟓 

Hardening curve 

suggested by Bai et 

al. 



3. Numerical Results 
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Tensile Stress States: Flat Grooved, 𝑹 = 𝟏. 𝟓𝟗𝒎𝒎 

 

 

 

 

 

 

 

 

• The new model has the ability to properly 

capture the effects of 𝜉 
 

• The appropriate value of 𝜎𝑠 = 325⁡𝑀𝑃𝑎 
 

• Despite the slight non-convexity of the yield 

function for 𝜎𝑠 = 325⁡𝑀𝑃𝑎, no convergence 

problems were found  In fact, the 

convergence rate is practically quadratic 

Von Mises New Model, 𝝈𝒔 = 𝟑𝟒𝟎 New Model, 𝝈𝒔 = 𝟑𝟐𝟓 



3. Numerical Results 
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Tensile Stress States: Butterfly Specimen 

 

 

 

 

 

 

 

 

• The difference among the results is due to the 

fact that at the critical section 𝜉 is not equal to 

one 
 

• Shear effects associated with average stress 

triaxialities take place at the critical section 
 

• This is a consequence of the geometry 

Von Mises New Model, 𝝈𝒔 = 𝟑𝟒𝟎 New Model, 𝝈𝒔 = 𝟑𝟐𝟓 



3. Numerical Results 

21 F.J.P. Reis, F.X.C. Andrade, German LS-DYNA Forum 2012. 

Shear Stress States: Butterfly Specimen 

 

 

 

 

 

 

 

Von Mises New Model, 𝝈𝒔 = 𝟑𝟒𝟎 New Model, 𝝈𝒔 = 𝟑𝟐𝟓 



3. Numerical Results 
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Compressive Stress State: Upset Test 

 

 

 

 

 

 

 

• Number of  Elements: 3253 

 

• Friction coefficient: 𝜇 = 0.05 

 

• 𝐷 = 8𝑚𝑚, ℎ = 6𝑚𝑚 
 

• There is no significant difference 

between the results provided by the 

von Mises and the new model 
 

• Results do not change with varying 𝜎𝑠⁡ 
 

• The numerical and experimental 

results match perfectly 



3. Numerical Results 
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Compressive Stress State: Upset Test 

Third Invariant, 𝝃 

Accumulated Plastic Strain 

• Throughout the deformation process and at the 

center of the specimen, 𝜉 remains practically 

constant and equal to 1 

• However, on the outer surface, 𝜉 is not 

constant, verifying a small decrease  

• The evolution of 𝜉 on the outer surface of the 

specimen does not have any impact on the final 

result for different values of 𝜎𝑠 

• The results are in agreement with the main 

assumptions initially proposed 



3. Numerical Results 
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Compressive Stress State: Butterfly Test 

 

 

 

 

 

 

 

Von Mises New Model, 𝝈𝒔 = 𝟑𝟒𝟎 New Model, 𝝈𝒔 = 𝟑𝟐𝟓 

• There is no 

pronounced difference 

between the responses 

provided by von Mises 

and the new model 
 

• In agreement with the 

initially desired features 



Final Remarks 
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• The proposed model is able to capture the effects of the third invariant at 

different stress states (tension, shear and compression) 

 

• Only one extra material parameter is required by the proposed model when 

compared to classical von Mises plasticity; the effects of the additional 

material parameter are also easy to grasp 

 

• From the computational point of view, the proposed model is simple to 

implement and also to understand; furthermore, it does not present 

convergence problems 

 

• The initial desired features for the model were achieved 



Final Remarks 
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Future work 

 

• To perform an analytical analysis to find out the critical value of 𝜎𝑡 − 𝜎𝑠 from 

which the resulting yield function is non-convex 

 

• To define based on experimental tests how to define 𝜎𝑠 (flat grooved 

specimen, pure shear test, …) 

 

• To combine the new model with a damage/failure model (such as GISSMO 

through *MAT_ADD_EROSION) 

 

• To use the new model to simulate components and structures in practical 

applications 

 

• To better investigate the yield locus of aluminium alloys based on 

experimental evidence (is non-convexity perhaps a must in some cases?!) 
 



Thank You! 
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Visit the city of Porto in Portugal! 

fabiojpreis@gmail.com 
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