Short Fiber Reinforced Plastics in Explicit Simulations

State of the Art Approaches for Efficient Modeling

11th German LS-DYNA Forum 2012, October 9-10, Ulm, GE

Jan SEYFARTH, e-Xstream engineering Noriyo ICHINOSE, JSOL Corporation

NTT Data Global IT Innovato

Short Fiber Reinforced Plastics in Explicit Simulations

🕫 Overview

✓ Company

- Some Recent Changes
- Motivation

✓ Technology

- Material Modeling
- Solution Procedures
- Mapping

✓ Full Vehicle Simulation

- Lower Leg Impact
- Front Crash

JSOL CORPORATION

NTTOATA Getal IT mosto

Some Recent Changes Motivation

Some Recent Changes

€ e-Xstream engineering

- ✓ Now a « MSC Software company »
 - Aquisition in October 2012
 - Team of 25 specialists has joined an organization of 1.100 worldwide...
 - e-Xstream will be kept & run as an independent company

✓ What does this mean to the DIGIMAT users?

- Everything remains unchanged!
 - Full support of all FEA interfaces (Digimat-CAE/LS-DYNA, ...)
- Same strategy for the future...
 - Focus on composite material modeling
 - » Stiffness, Failure, Creep, Fatigue, ...
 - Interface between processing & structural simulation
 - » Injection molding / Compression molding / ...
 - » Draping / Mucell / ...

Motivation

C Industrial Application of Micromechanical Modeling

✓ Automotive

- Reduce CO₂ emissons
 - Need to use lightweight material
- Shorten developing time
 - 1.8 years to 9 months

✓ Simulation of plastic parts

- Composite material modeling
- Application to
 - Part design
 - Pedestrian safety
 - Full car crash

Motivation

C Industrial Application of Micromechanical Modeling

✓ Requirements for Full Vehicle Crush Simulation

- !!! Reasonable Calculation time !!!
 - Within 1 night
 - Size of vehicle model is increasing
 - » Current: over 3M elem. (Expect over 10 M elem. in 3 years)
- Support of many types of load cases
 - Frontal(full frontal, Offset, small overlap), Side, Rear, Pedestrian, etc.
- Need 1 model that is suitable for all load cases
- Material definition for lightweight material
 - Strain rate dependency \rightarrow Yield, failure
 - − Composite → Anisotropy

© e-Xstream engineering 2012

TECHNOLOGY

Material Modeling Solution Procedures

Material Modeling

🕫 Stiffness

✓ Composite properties

- Nonlinear
- Strain rate dependent

\checkmark Mean field homogenization

- Properties of matrix / fibers
- Microstructure

🛠 Failure (SFRP)

✓ Tsai-Hill 3D transversely isotropic

- Only 3 parameters to define
- ✓ Applied on pseudo-grain level

Solution Procedures

Solution Procedures

← HYBRID Solution → explicit solvers

- ✓ DIGIMAT 4.2.1 January 2012
 - 9 days / 3 CPUs → 1 day / 1 CPU
 - Good global response
 - Good local results

✓ DIGIMAT 4.3.1 ^{July 2012}

• Up to 50% decrease in memory

✓ DIGIMAT 5.0.1 January 2013

- About 30 50% gain in CPU
- Up to 40% decrease in memory
- Failure fully strain rate dependent

8 hours / 3 CPUs {4.2.1}

35 min. {5.0.1}

OT format	Version	1 Proc	
.xml OT file	4.2.1	22 GB	
	4.3.1	8 GB	
.dof OT file	4.2.1	12 GB	
	4.3.1	8 GB	

Model size: 1.3 Mio elements

FULL VEHICLE SIMULATION

Lower Leg Impact Front Crash

Multi-Scale Approach

✓ ANISOTROPIC Model

- Elasto-Viscoplastic
 - Strain rate dependent
- Failure
- Large vehicle model
 - Over 3 Mio elements
- ✓ Evaluation vs. ISOTROPIC
 - Elapsed time
 - Robustness
 - Global / local responses

JSOL CORPORATION

NTTOATA Goal IT most

© e-Xstream engineering 2012

JSOL CORPORATION

🛠 Bumper Beam

NTTOATA Getal IT most

✓ Elapsed time ^{4.2.1} (16 cores)

	Termination	Elapsed time	cycles	ratio
ISOTROPIC	Normal (10[msec])	1 m 41 s	10674	1.0
HYBRID	Normal (10[msec])	1 h 27 m 45 s	31835	51.6
MICRO	Error (1[msec])	(39h 50m 16s)	(31835)	1420

✓ Failure behavior (10ms)

Sc Bumper Beam

_

>>

»

JSOL CORPORATION

NTTOATA Getal Trimonato

✓ Why can HYBRID still take longer? 8.000 MD: Heart water-CPU time per cycle [msec] Ave:5.27 µs Timestep Ave:5.03 µs Timestep size based on stiffness matrix Minimum timestep DIGIMAT (HYBRID & MICRO) 0.315 μs Ave:0.313 µs ISOTROPIC 0.935 µs Time[msec] • Tune your model factor 2.6 doable Adjust time step

Homogeneous 0.9 HYBRID HYBRID with mass-scaling

DIGIMAT 5.0.1

Parallelize your computation

Use mass scaling

3.9

6.5

Sc Bumper Beam

✓ Why can HYBRID still take longer?

- Digimat material subroutine
 - Average CPU time per Cycle
 - ISOTROPIC 0.313 µs **>>**
 - HYBRID 5.03 - 5.27 μs »
 - MICRO 179.8 μs »
 - HYBRID material is
 - 17 times SLOWER than ISOTROPIC **>>**
 - 34 times FASTER than MICRO >>

50% faster with DIGIMAT 5.0.1

- ~ 9 times slower than isotropic...
- ~ 3 times slower than isotropic...

- \checkmark HYBRID is much FASTER than MICRO method!
 - If all elements are DIGIMAT material, still some CPU is consumed

NTTOATA Getal Time

- no mass scaling / tuning - mass scaling / tuning

Sc Full vehicle

NTTOATA Gatal Tresato

JSOL CORPORATION

Elements	3.1 Mio	
Ave. elem size	5.0 [mm]	
Min. time step	0.25 [µsec]	
DIGIMAT	0.84% (26.000)	

Pedestrain Protection (Lower leg)

- - Maybe yes, but only 0.84% DIGIMAT in vehicle model

Iso

Hybrid

- Others?
 - Yes Elapsed time is highly depend on decomposition for parallelization!

Lower Leg Impact

€ Full vehicle

- ✓ Lower leg impact
 - Elapsed time is 4 times larger than ISOTROPIC

✓ WHY?

- Minimum time step?
 - No, time step of metal panel is smaller than DIGIMAT material...
- **DIGIMAT** calculation?

JSOL CORPORATION

NTTOATA Getal IT most

JSOL CORPORATION

Sc Full vehicle

NTTDATA Getal Timost

✓ Optimized

• Almost same as improved but all domain have DIGIMAT elements

∞ Full vehicle

✓ Acceptable increase of calculation time

- $9 \rightarrow 14$ hours on 32 cores
- Only 8 hours on 64 cores

✓ Loss in efficiency for ISOTROPIC

- On 64 cores
- Overhead of communication

✓ YES – WE CAN...!!!!!

	16 cores	32 cores	64 cores
ISOTROPIC improved	17 h 59 m	9 h 17 m	10 h 0 m
HYBRID default	-	42 h 31 m	-
HYBRID improved	26 h 37 m	14 h 16 m	8 h 15 m
HYBRID optimized	-	12 h 5m	-
MICRO improved	-	152 h 51 m (6.4 days)	-

JSOL CORPORATION

NTTOATA Goal IT most

Front Crash

Sc Full vehicle

JSOL CORPORATION

NTTDATA Getal IT month

\checkmark What is the impact on the results?

- Stress distribution different
- Failure area different

Short Fiber Reinforced Plastics in Explicit Simulations

SUMMARY

✓ Injection molded plastic parts in full vehicle simulation...?

✓ YES – WE CAN...!

Dr. Jan Seyfarth

Product Manager DIGIMAT

e-Xstream engineering (L)

 Phone:
 +49 (0)89 / 306 007 94
 3

 Mobile:
 +49 (0)176 / 70 55 47 59
 3

 Skype:
 eX_JSH
 3

 Email:
 jan.seyfarth@e-Xstream.com
 w

Z.I. Bommelscheuer L-4940 Bascharage LUXEMBOURG

www.e-Xstream.com

