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Overview 

 

• Failure models in LS-DYNA : GISSMO 

• Localisation and regularisation 

• Strong anisotropic flow and damage 

• Summary and conclusions 

 

 

predicting failure is far more difficult than predicting ductile deformation 

J. Jergeus, 2012 
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Failure models in LS-DYNA 

   



PDB 

Introduction 

• Many material and failure models available in LS-DYNA  

• Every failure and material model should be as complicated as necessary 

and as simple as possible 

• Adapted to the needs of a specific user community 

• Will also inevitably reflect the experience of the development team 

• Classical material science theory aims for a predictive analytical model 

based upon as few parameters (=tests) as possible 

• This seems an elusive goal 

• Many modern material and failure models are tabulated 

• The basic idea is to assemble as many tests results as possible, tabulate 

them and interpolate between the tabulated values in the application 

• Both approaches have a limited range of validity 
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Elements of failure models 

• Damage accumulation : usually (but not always) based on plastic strain, can 

be linear or non-linear, scalar or tensorial, isotropic or anisotropic etc…. 

• Damage coupling : reduction of material stiffness and strength prior to 

failure 

• Failure criterion : function of state of stress, temperature, strain rate… 

• Regularisation : one of many methods 

• Discretisation of failure : element erosion, constrained nodes, ALE, 

meshless methods, XFEM, isogeometric methods … 
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Examples of recently added failure models in LS-DYNA 

developer User 

community 

Coupled 

damage 

Temp. 

dependent 

regularisation Damage 

mapping 

GISSMO Daimler 

DYNAmore 

crash optional no Load curve yes 

MAT_224 FAA/NCAC 

LSTC 

aeronautical no yes Load curve no 

MAT_107 NANTUA 

LSTC 

ballistics yes yes viscosity no 

MAT_037 GM 

LSTC 

forming no no none no 

First 3 models draw heavily on the original work of Johnson and Cook 
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Notions in failure and instability theories 

Diffuse necking : the point where we observe 

a loss of the homogeneous state of 

deformation, a pretty CLEAR notion, at least 

at the simulation level 

Local necking : basically the formability limit, 

a rather FUZZY notion that needs to be 

defined for every application, can depend on 

the size of the imperfection and the size of 

the grid (numerical or DIC) 

Failure : the point where a simply connected 

part becomes multiply connected : cracks 

appear, also a pretty CLEAR notion 
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The philosophy of GISSMO 

The user defines a failure curve ( the onset of cracks ) and 

a critical strain curve ( the loss of uniformity in the strain field ) 

Between the critical strain curve and the failure curve  

we assume a continuous process of localisation  

inducing mesh dependency, this process  

corresponds to some combination of damage  

and plastic instability : 

 

 

 

If the failure curve is reached before the critical  

strain curve we assume a ‚brittle‘ failure not  

preceded by localisation and damage : 
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The philosophy of GISSMO 

The critical strain curve can be considere as : 

 onset of diffuse necking 

 start of localisation of plastic deformation 

 start of mesh dependency 

 start of a need for regularisation 

 start of damage coupling 

 

The fading exponent in the damage coupling 

constitutes another element of the regularisation 

procedure 

 

 

 

    

Damage evolution 

Damage/stress coupling 
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 Inherent mesh-size dependency of results 

in the post-critical region 

 

 Simulation (and calibration) of tensile test 

specimen with different mesh sizes 

Mesh size dependency 

Regularisation in GISSMO 

Simple regularization 

Strain 
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Regularisation in GISSMO 

No coupling With coupling 

Small differences in force levels can imply high differences in crack propagation speed 
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The philosophy of GISSMO : the mapping aspect 

F2C is essential for all cold formed components 

Use of material laws is very different in the forming and crash communities 

 

 

 

A flexible implementation of the failure/damage model as *MAT_ADD is necessary 

In order not to overestimate the mapped  

damage at the end of the forming simulation,  

the damage evolution must be non-linear 

 

 

 

 

 

   

Hill Barlat others 

37, 39, 122, 125 

103, 104,  243 

33, 36, 133, 190 

242, 226 

135, 244, 233 

136,  113 

MAT_024 

MAT_XXX 
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Linearized measure of damage for GISSMO 
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Example of a component test with failure 

Fringeplot based on max IP is not reliable 

Linearized damage = HV16 



PDB 

15 

Postprocessing of the linearized damage 

AGSM  „max. IP“ AGSM  „average“ AGSM  „IP1=MID“ 

 there is really no ‚early warning‘ system for failure 
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Localisation and regularisation 
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State of the art in vehicle component modelling 
4PB test 
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State of the art in vehicle component modelling 
 

   

4pb 5mm 

4pb 2.5mm 
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observations 

• Convergence in terms of displacement and force does not necessarily inly 

convergence in terms of stress and strain 

• Failure models without regularisation cannot work on non-homogeneous 

meshes as failure will be biased towards the smaller elements 
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Localisation of plastic deformation 

 

• Localisation comes with instability : 

 

• Two kinds of instability as :  

 

• Structural instability :  (e.g. necking) 

 

 

• Material instability :  (e.g. shearband) 

 

 

• Any instability will require regularisation 
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Types of material instability 

• Decrease of stress with increase in strain : 

 

• Strain softening :  ( not in metals ) 

 

• Rate softening :  ( PLC effects ) 

 

• Thermal softening :  (adiabatic shearbands) 

 

• No instability is expected in metals under QS isothermal shear loads, 

so no regularisation should be necessary  

 

• Onset of instability in general depends upon many factors 
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Methods to identify the onset of localisation 

Example of the Swift 

 

 

 

versus Belytschko 

 

 

 

criterion for AL-2024 

 

Different criteria do exist ! 
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Different assumptions for ECRIT in GISSMO 

Shown is the uniaxial tensile test, similar validation was done for other experiments 
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Back to GISSMO : the Shearfactor 

SHRF=1     SHRF=0 
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AA6014 T7 component in full car simulation 

SHRF=1 

SHRF=0 
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Shear failure 
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SHRF=1 

BIAXF=0 

SHRF=0 

BIAXF=0 

Last triax before failure   average triax 
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Strong anisotropic flow and damage 
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Material Data Set 

• An data set was provided for material 

DBL4919.10 

• This data set included global tensile 

test measurements for three different 

angles 

• 0°, 45° and 90° 

/Presentation/MAT135OPT 
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Material Anisotropy 

• At first glance, the selected 

material does not look 

anisotropic based on the yield 

stress 

• Failure strain varies, however it 

can be attributed to 

measurement scatter 

• R00 was measured using the 

Aramis system to be 0.49 

indicating strong anisotropic 

flow 
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Yield curves 

Extrusion Direction 
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Optimization With Material 135 

• An optimization was set up for the following variables: 

• QR1, CR1, QR2, CR2, R45 and R90 

• Other variables were measured 

• Important to note that the model does not have a tabular hardening curve, 

rather it uses parameters (QR1, CR1, QR2, CR2) 
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Material 135 Optimization Results 

Extrusion Direction 
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Material 135 Optimization Results 

Extrusion Direction 
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Material 135 Optimization Results 

Extrusion Direction 
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Material 135 Conclusions 

• Reference material shows R values as: 

• R00 = 0.48, R45 = 0.29, R90 = 1.76 

• “Bumper Beam Longitudinal System Subjected to Offset Impact Loading” , 

Kokkula (PhD Thesis) 

• AA-6060 T1 Aluminum 

• Optimized R values for AW-6060 T66 are: 

• R00 = 0.49, R45 = 0.323, R90 = 1.59 
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Material 135 Conclusions 

• Material 135 offers more flexibility with the anisotropic behavior of the 

material 

• However, the yield curve inputs do not offer enough degrees of freedom to 

generate an accurate enough curve 

• The next phase should be to test similar anisotropic material card with tabular 

load curve data for the hardening curves in each direction 
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Material 36 : Optimization Parameters 

• 8 total input variables 

• Hocket-Sherby “c” variable 

• One for each extrusion direction (x3) 

• Hocket-Sherby “n” variable 

• One for each extrusion direction (x3) 

• R45 

• R90 

• R00 was measured using ARAMIS 

• DYNAmat was used to generate input curves 
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Material 36 Optimization Results 

Extrusion Direction 



PDB 

Material 36 Optimization Results 

Extrusion Direction 
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Material 36 Optimization Results 

Extrusion Direction 
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Material 36 Conclusions 

• Reference material shows R values as: 

• R00 = 0.48, R45 = 0.29, R90 = 1.76 

• “Bumper Beam Longitudinal System Subjected to Offset Impact Loading” Kokkula 

(PhD Thesis) 

• AA-6060 T1 Aluminum 

• Optimized R values for AW-6060 T66 are: 

• R00 = 0.49, R45 = 0.27, R90 = 1.69 
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Crashworthiness Application 

• This model was tested to improve the response/failure prediction of an 

extruded tube profile 

• Original model was Material 24 in LSDYNA 

• Initial simulations provide excellent force vs. deflection results however the 

simulation lacks the necessary plastic strain to create element failure 
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Profile Bending Simulation 

Three point bending test 
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Summary and conclusions 

• A damage and failure model must be selected in function of the application 

• Damage is hard to prost-process : there is no ‚early warning‘ system for 

failure 

• Regularisation is essential as for element sizes relevant to a crash model no 

convergence can be expected in terms of stress and strain values 

• Regularisation should only be applied when needed : too much of a good thing 

can be bad 

• Damage and failure models can only have a predictive power if the state of 

stress and plastic deformation are accurately simulated by the material law 

   


