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Abstract

System identification of 'noisy' structural design optimization problems: the sources of
uncertainty, the competing roles of bias and variance, and the interaction of
uncertainty and deterministic effects. Two test problems are used to clarify the effect
of different approaches.

1. Introduction

No two structural events will be exactly similar; nor will a structural event occur
exactly as designed or analyzed. Adverse combinations of design and loading
variation may lead to undesirable behavior or failure; therefore, if significant variation
is expected, a probabilistic evaluation is required.

The responses may be known only in probabilistic terms in certain classes of
structural problems, for example: vehicle crash. Computational analysis may be the
most time and cost efficient solution due to large number of data associated with
different designs that must be collected.

Differences in structural performances can be attributed to deterministic and random
effects. The redesign of the structure requires understanding the link between cause
and effect, while the variance of the response about its nominal is required for
judgments such as reliability. Distinguishing between deterministic and random
effects is however challenging.

Having repeatability of results is desirable. Reducing the variation in the responses
requires that the sources of the variation be well understood. A number of sources of
uncertainty are applicable for reliability analysis [1]; all of these must be considered
for applicable results. The resulting reliability evaluation procedure can be used to
redesign the structure, or inside a reliability design optimization scheme [2] to
automatically find an improved design.

This study accordingly describes the sources and quantification of the variation of an
explicit FEA analysis.
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2. Probabilistic Background

2.1 Response Variation

Unsafe
. Samples

P[Stress|

L \@
Stress
Figure 1: Response Variation

The variation of the response can be decomposed as:
o Deterministic variation. An expected, predictable, and repeatable variation
in a response associated with a variation in a parameter.
e Random variation. Variation that cannot be associated with a change in the
system parameters. The random variation can be further decomposed as:
0 Regular random variation. Not known to be associated with the
physics of the problem.
0 Chaotic random variation. Noise caused to grow because of
bifurcation (eigenvalue) behavior in the structure.

The response variation is quantified using a probabilistic analysis. From the
probabilistic analysis we want to infer the following from the responses:

Distribution of the response values.
Probability of failure.
Properties of the designs associated with failure.
0 Variable screening - identify important noise factors.
o Dispersion factors - factors whose settings may increase variability of
the responses.
Efficient redesign strategies.
Understand the source of noise in structure.
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2.2 Sources of Variation
The variation of the responses is caused by:

Variation in the structure; for example: variation in yield stress.

Variation in the environment; for example: variation in a load.

Variation in the problem modeling and analysis; for example, mesh density.
Variation in the analysis; for example, a different buckling mode being
activated.

e Pure variation; for example, machine precision.

2.2.1 Design Parameter Variation

The variation in a response due to a variation in a variable is usually known as a
deterministic relationship computed using FEA. Both the variation of the structure and
the variation of the environment can be described using design parameters.

Considering the sources of uncertainty in the system parameters, we decompose the
variables into two classes (using the Taguchi naming convention):

e Control variables: Variables that can be controlled in the design, analysis,
and production level; for example: a shell thickness. It can therefore be
assigned a nominal value and will have a variation around this nominal value.
The nominal value can be adjusted during the design phase in order to have
a more suitable design.

e Noise variables: Variables that are difficult or impossible to control at the
design and production level, but can be controlled at the analysis level; for
example: loads and material variation. A noise variable will have the nominal
value as specified by the distribution; that is, it will follow the distribution
exactly.

The relationship between the control process variables and the response variance
can be used to adjust the control variables in order to have an optimum process. The
variance of the control and noise variables can be used to predict the variance of the
system, which may then be used for redesign. Knowledge of the interaction between
the control and noise variables can be valuable; for example, information such that
the dispersion effect of the material variation (a noise variable), may be less at a high
process temperature (a control variable) can be used to selected control variables for
a more robust design.

2.2.2 Modeling Variation

Differences in modeling will give different results as well as introduce noise into the
results. Amongst others, the following factors:

Mesh density.

Choice between FEA, Element Free Galerkin, and SPH methods.
Resolution of data gathered — time step and filtering selection.
Selection of node/element to monitor.
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The physics of the problem must of course be modeled correctly for the above to be
relevant.

2.2.3 Analysis Variation

Slightly different initial conditions, especially when driven by eigenvalues, can lead to
noticeable differences in responses.

e Physical:

o Bifurcation events can be sensitive to initial values; for example,
buckling initiation.

o Changes in the design variables may cause different components to
come into contact, or change the order of impact.

e Algorithmic:

o Contact algorithms. The discretization of a smooth structure into
piecewise linear finite elements may lead to different orders of
events; for example, a node impacting the edge of a given element
may impact the edge of its neighboring element in a similar
simulation.

2.2.4 Pure Variation

This is a change in results associated with trivial or unrelated change in inputs; for
example: running on a different machine. Machine precision and compiler differences
are the important sources here.

These small changes can lead to a larger change of the response values if it triggers
a (different) bifurcation.

2.3 Reliability Computations

A number of methods exist for reliability computations. We consider the following set:
e Monte Carlo Simulation
e Using the standard deviation e.g. six sigma.
e Most probable point (MPP) based methods; for example FORM.

All of the above methods can be used together with metamodels. The error of the fit
of the metamodel, amongst others, contributes to the total error of computing
reliability [3].

Monte Carlo simulation is very expensive for the computation of small probabilities. A
suggestion for the minimum sampling size provided by reference [2] is:
N =10/P[G(x) < 0] with P the probability being estimated; therefore indicating
about 100 FE evaluations to evaluation an event with a 10% probability and 1000 FE
evaluations for an event with a 1% probability. Probability computations are therefore
usually used together with metamodels for which millions of functions evaluations are
feasible. If only the mean value and the standard deviation of the response is desired
then the method is more attractive, and may be the best method in some cases. The

error of estimating the mean is related to +/ N with N the number of design variables.
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Another way of using the Monte Carlo results is computing the mean value and
standard deviation (sigma) of the response and using the number of sigma’s away
from failure as an indication of reliability.

The probability of failure associated with a certain sigma value can then be
approximated by assuming a normally distribution response. For these computations,
we compute 3, the reliability index, as:

_E[G)]

'3 e S
DIG(X)]

with E and D the expected value and standard deviation operators respectively. The

probability of failure is then computed as:

Py =®(-p)

with ®(x) the cumulative normal distribution function.

Accurate computation of low values of failure (high reliability) is usually done using
method computing the Most Probable Point of failure (MPP). The advantages of
these methods are: (i) the MPP gives an indication of the design most likely to fail
and (ii) highly accurate reliability methods utilizing an approximation around the MPP
are possible. In this study we use FORM together with the Hasofer-Lind
transformation (see [1] for more details).

What constitutes engineering accuracy at the low probabilities is an open question. A
definition such as six-sigma may be best way of specifying the engineering
requirement; a precise numerical value may be not be meaningful. The accuracy of
the probability of failure computation should however be such that different designs
can be compared with each other.

Much more accurate and sophisticated methods of computing reliability are available
[1, 3, 4], but are outside the scope of this study.

2.4 Competing roles of variance and bias

In an investigation the important design variables are varied while other sources are
kept at a constant value in order to minimize their influence. In practice the other
sources will have an influence. Distinguishing whether a difference in a response
value is due to a deterministic effect or other variation is difficult, because both
always have a joint effect in the computer experiments being considered.

In general [5] the relationship between the responses y and the variables x is:
y=f(x)+x)+e

with f(x) the metamodel; 8(x) = n(x)— f(x), the bias, is the difference between the
chosen metamodel and the true functional response 7(X); and eis the random
deviation.

The bias (fitting error) and variance component both contribute to the residuals. If we
compute the variance of the random deviation using the residuals then the bias
component is included in our estimate of the variance.
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3. Examples

3.1 Basic Problem — Two bar truss

We use the two bar truss problem as shown in the figure to demonstrate some
concepts.

Figure 2: Two-bar truss example

There are two design variables: x4 the cross-sectional area of the bars, and x, half of
the distance (m) between the supported nodes. The lower bounds on the variables
are 0.2cm® and 0.1m, respectively. The upper bounds on the variables are 4.0cm®
and 1.6m, respectively.

The stress is constrained as follows:

o(x) = 0.1241/1+x2{§+L)S1
X

1 %X

The probability of violating the stress constraint is computed. The design variables
are normally distributed with a standard deviation of 0.05. In addition to the variation
due to the design variables, a normally distributed random component with a
standard deviation 0.025 is added to the stress results.
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We compare the results from a number of strategies of computing reliability at
different design points with the results as shown in the table.

Method Design

[1.40, [1.45, [1.50, [1.55, [1.60,

0.5] 0.5] 0.5] 0.5] 0.5]

Probability of Failure
Plo(x)>1.0]

[Probability without random variation compensation]
Correct 0.44 0.17 0.038 0.0050 0.00036
Monte Carlo (150 0.49 0.15 0.040 0 0
experiments)
Using Reliability Index | 0.48 0.17 0.033 0.0029 0.00012
Linear Taylor 0.41 0.14 0.028 0.0028 0.00015
expansion at design [0.39] [0.09] [0.007] [0.0001] | [0.00000]
Quadratic Taylor 0.44 0.16 0.037 0.00475 | 0.00035
expansion at design [0.42] [0.11] [0.013] [0.0006] | [0.00000]
Linear Taylor 0.41 0.15 0.031 0.0036 0.00025
expansion at MMP [0.39] [0.10] [0.012] [0.0005] | [0.00000]
Quadratic Taylor 0.44 0.17 0.038 0.0051 0.00038
expansion at MPP [0.42] [0.11] [0.014] [0.0007] | [0.00001]
FORM 0.43 0.16 0.039 0.0053 0.00046

[0.39] [0.10] [0.0115] | [0.0005] | [0.00001]

The ‘correct’ probabilities are computed using a Monte Carlo analysis with 10’
experiments. For this trivial problem we can evaluate the structure millions of times;
in general, using FEA simulations, this is not feasible.

The practical use of Monte Carlo simulation in FEA limits the number of function
evaluations to about 150. We use the Monte Carlo simulation to compute probability
of failure and as well as the mean value and standard deviation of the response.

Using the mean value and standard deviation of the response computed in the Monte
Carlo analysis, we can compute the probability of failure assuming a normally
distributed response. These computations start showing errors at probabilities lower
than 1% (3 sigma events) for this study. This also has implications for methods such
as FORM that depends on the normally distributed assumption.

For the Taylor approximations, we compute the probability using the approximation
inside a Monte Carlo simulation using 10’ experiments. We compensate for the
random variation by adding a normally distributed noise to the approximations when
computing the probabilities. In this case the magnitude of the noise is known; in the
general case the magnitude of the noise is computed when fitting the response
surface — the lack of fit is assumed to be due to the noise.
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We create the Taylor approximations around both the current design point and the
MPP (Most Probable Point) computed using FORM. The MPP is the closest point on
the failure initiation hyperplane; an approximation accurate at the MPP should allow
for more accurate reliability computations as confirmed especially for the linear
approximation reliability results.

In the FORM we compensate for the noise component by adding it to the variation
caused by the variables in the u-space:

2 2
lBtotal = leeter min isticﬁrandom /(Brandom + ﬁdet ermin istic) '

The results without the noise are given as well in the table. It can be seen that the
noise component contributed significantly to the probability of failure this above study.
The standard deviation of the response is 0.036 (3.6%) without the noise component
and 0.044 (4.4%) with the noise component. This leads to significantly different
results at low probabilities of failure.

The quadratic Taylor expansion at the MPP gave the best accuracy of the reliability
methods tested. For use in reliability, a metamodel should therefore incorporate
curvature and be accurate at the failure hyperplane.

In the above we used Taylor expansions and FORM together with a known variance
of the random component. In general the standard deviation of the random
component will be computed when fitting the metamodel. To investigate the accuracy
of obtaining the random component, we fit a quadratic response surface, using a
space filling experimental design, to a subregion size of 0.4 cm? by 0.2m in the
design variables in order to minimize the bias error. Both the standard deviation of
the noise and mean value of the response computed from the Monte Carlo analysis
are required to compute the reliability; they are given the following table. From the
data it seems, that for this problem, more than 50 experiments are required to
estimate the second digit of the variance; however, more experience with industrial
problems and statistical tests are desirable for recommendations. Note that at least
six experiments are required to compute the response surface; the other experiments
are required to estimate the variance. The number of experiments required to
compute the metamodel increases with the number of design variables, while the
number of experiments required to estimate the variance does not increase with the
number of design variables.

Number of experiments Standard Deviation Mean
10 0.0214 1.003
20 0.0242 0.9866
50 0.0205 0.9959
100 0.0256 0.9938
500 0.0247 0.9941
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3.2 Head Impact Problem

We consider the problem of a Free Motion Headform (FMH) impacting an A-pillar as
shown in the figure. The mesh is parameterized using the TrueGrid preprocessor [6].
We consider two variables: the angle of the impact and the rib stiffener height of the
pillar padding. The angle of impact is taken to be 15 degrees with a 10 percent
standard deviation, normally distributed. The rib height is 12.5mm with a 5 percent
standard deviation, also normally distributed. We investigate the variance on the
Head Injury Criterion, HIC-d = 166.4 + 0.75466*HIC15.

A-Pillar

Variables
e Angle of impact,
e Rib height

Figure 3: Head Impact FE Model

Firstly we investigate the problem using a parametric study in which we vary one of
the variables at a time. The results are shown in figure 4 and 5. From the figure it is
clear that the problem has some noise and the variables has a mostly linear effect on
the HIC response.
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gle" vs. Response "HIC-d"
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Figure 4: HIC - Horizontal Angle variation
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Figure 5: HIC - Rib Height variation

Variable: Rib_Hei

We investigate the probability of the HIC-d exceeding certain values using a Monte

Carlo analysis and a metamodel.
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The Monte Carlo evaluation using 150 points was done with the results as in shown

in figures 6 and 7.
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The metamodel used is a quadratic response surface computed using a space filling
experimental design of 60 points over a subregion two standard deviation wide
around the design being investigated. The random variation is estimated to have a
variance of 2.35 from the residuals. Results are computed from the metamodel using
a Monte Carlo analysis of 10° points.

The results for different probabilities of exceeding certain values are giving the
following table. From the table the influence of the random variation on the probability
of failure can again be seen.

Monte Carlo Metamodel
150 FE evaluations 60 FE Evaluations
[Value without random
variation compensation]
Using Using Monte Carlo FORM
Monte Reliability Index
Carlo
Values
Mean 373.9 373.9
Standard 4.85 4.82
deviation [4.21]
P[HIC > 374] 0.520 0.494 0.511 0.514
[0.517] [0.523]
P[HIC > 376] 0.340 0.334 0.346 0.349
[0.328] [0.333]
P[HIC > 378] 0.213 0.200 0.202 0.202
[0.167] [0.17]
P[HIC > 380] 0.0733 0.105 0.0983 0.0960
[0.0629] [0.0649]
P[HIC > 382] 0.0267 0.0479 0.0388 0.0351
[0.0158] [0.0166]
P[HIC > 384] 0.0267 0.0189 0.0120 0.00922
[0.0023] [0.00243]
P[HIC > 386] 0.0133 0.00638 0.00287 0.00159
[0.00014] [0.00016]

4. Summary, Conclusions, and Recommendations
Predictable responses together with an estimate of their repeatability are desirable.

Probabilistic methods should have the following key properties:
o Establish link between cause and effect.
e Distinguish deterministic effects from random occurrences.
e Model and quantify uncertainty in the responses.

Using metamodels or the reliability index to compute reliability is preferred over a
Monte Carlo analysis for reasons of cost and accuracy at small probabilities. Effective
use of metamodels, especially for small probabilities, should incorporate (i) curvature
and (ii) be accurate at the failure hyperplane.
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The random variation — variation not associated with a change in the variables,
though intrinsic to the structural event — can contribute to accuracy of reliability
computations. The uncertainty can be used in conjunction with the metamodels when
computing probabilities of events. However, if the random variation is not associated
with the physics of the problem, then it should not be incorporated into the reliability
computations and a metamodel filtering out the random variation should be used.

It is preferred to reduce random variation using careful modeling, consideration of the
physics of the problem, and possibly redesign of the structure. Incorporating the
noise component allows a better probabilistic quantification of results from the FEA
analysis; it does not substitute for correct physics.

More advance meta-models may be considered; response surfaces are used here for
clarity. The bias component of the residuals should be kept in mind.
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