

High-Performance Computing on Intel® Architecture

Agenda

HPC Industry and Market Trends

Driving the Change in HPC

HPC Building Blocks

HPC Solutions

Software Toolset

int_{el}.

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved.

2

MPP / Linux Cluster / Hardware II

High-Performance Computing on Intel® Architecture

Some HPC History

1960s

1980s

1990s

2000s

HPC Systems	1970s	1980 s	1990s	2000s	
Processor	proprietary	proprietary	COTS	COTS	
Memory	proprietary	proprietary	COTS	COTS	
Motherboard	proprietary	proprietary	proprietary	COTS	
Interconnect	proprietary	proprietary	proprietary	COTS	
OS, SW Tools	proprietary	proprietary	proprietary	сотя	

COTS: Commercial off the Shelf (industry standard)

High-Performance Computing on Intel® Architecture

int_{el}.

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved.

5

The Growing Popularity of (SMP-)Cluster Computing

2,304 Intel® Xeon™ 2.4 GHz processors power this 5.69 TFlops supercomputer at Lawrence Livermore National Labs. It rates as the fifth fastest in the world.

The number of clusters in the TOP500 has grown to nearly 20 percent, with a total of 93 systems. 56 of them are Intel Architecture based.

int_{el}.

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved.

K – II - 27

K – II - 29

MPP / Linux Cluster / Hardware II 4th European LS-DYNA Users Conference

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved. MPP / Linux Cluster / Hardware II

High-Performance Computing on Intel® Architecture

Itanium[®] 2 Processor Performance

Application Area		Benchmark	Results	Beats Best R	ISC By
	Enterprise Resource Planning	4P SAP SD ¹	600	IPF Also Alpha 16	
S T	Supply Chain Demand Planning	4P SAP APO-DP ²	158K	IPF Alpha	15%
Enterprise Computing	On-line Transaction Processing	4P TPC-C (TPC-C) ³	87.7	IPF Also Alpha 32	
	On-line Transaction Processing	4P TPC-C (\$/TPC-C) ³	\$5.03	IPF Alpha	47%
	Secure Transactions	4P SPECweb99_SSL ⁴	1888	IPF Also PA-RISC 2P &	
Technical Computing	Matrix Multiplication	32P Linpack ⁵	101.7	IPF Power 4	7%
	Matrix Multiplication	1P Linpack ⁶	3534	IPF Power 4	22%
	Floating Point Computation	SPECfp_base20007	1431	IPF Power 4	17%
	Memory Bandwidth	64P Stream Triad ⁸	125K	IPF 64P Sun 72P	146%

en Hanlundt 2 processor result on HP Server n5670 using 4 Hanlundt 2 2018 L3 cache, 1608 memory, Windows Advanced Server LE 12, 3AP rev the Editor 64bit Alpha result of 420 on HP Alpha Server 6546 using 4 Alpha

road Server, Microsof SQL* Server 2000 Enterprise Edition 64-bit, r ES45 Model 66/1250, 55,375/pmC at \$9.44/pmC with 4 HP d Source www.spac.org Rankon.6.2 processors resultion HP Server m5670 using 4 Ray processors (CHL with 348 L2 cache, 16:29 memory, MRUX, synabistic (022, PA, 18)2 (Source of CHL with 348 L2 cache, 16:29 memory, MRUX, synabistic (022, PA, 18)2 cap.com, flaman® 2 processor mouth on a HF Server of 5010 using 4 flamon® 2 Ha with 3865 L3 server, 3335 memory, Windows Advanced Server L5 12, 331 Server work of 15562 on HF Alphadenver (2545 using 4 Alpha 21354 C 5V6.005 L250 OHz 8 Jourse www.netile.org. Renam6 2 processor resist on NEC Jenner 172788 10 using 32 Renam6 2 processors 1024 with MB L3 cache, 10208 memory, Linux 05, Power 4 Renam 052 on IDM PBS0 using 32 Power 4 100MHz.

6 Source www.netRis.org Tenium® 2 processor result on HP Server n8670 using one flation® 2 processor 10Hz with 3MB L0 coche, 2408 memory, HP UX, Pover 4 result of 2594 on IBM eServer MSR using one Power 4 10Hz. T Source werver peop orgitherium 2 processor multition HP Senser (500 units) theriam 2 processor 100 cmth 3MB [3 month, 500 memory, RH Liters 2 1, HW south018y302; Power 44 multisht221 on RM eSenser P000 Model 6M [3 units] Prover 4 - 1400 Metz, 338, availability 1002; 8 SG ANM* 2000 west of 154,801 MBV using 64 Intel® Nexture 2 processors, 18058 rearrany, Linux, sported V703 - Sau File VK synutro 50,734 MBIs using 72 URsSPARC* BI Gu at 1.05GHz, 5 KGB memory, Solite 9, reported 97042

hardware or software design or configuration may affect actual performance. Buyes should consult are www.intel.com/percedue tillents. Intercede (U.S.) MOD 625-6500 or 5-916-325-3504 reflect the approximate performance of intelling successful and an and ducts as measured by those tests. Any difference in system

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved.

18

High-Performance Computing on Intel® Architecture

Madison**

Next-Generation Itanium® Architecture Processor 130nm Process 410M Transistors Up to 1.5GHz Frequency 6MB integrated L3-Cache **Pin-Compatible to Itanium® 2 Processor Same Thermal Envelope** Low-Voltage Version (Deerfield**)

~1.3-1.5x faster than Itanium® 2

int_{el}.

*Other brands and names are the property of their respective own ers © Copyright 2002-2003 Intel Corporation. All Rights Reserved.

19

K – II - 33

MPP / Linux Cluster / Hardware II

