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Structural health monitoring
under consideration of uncertain data
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Abstract:

In the paper an approach for structural health monitoring is introduced comprising uncertain structural
analysis, assessment of damage and performance by uncertainty-indicators as well as prognosis of
structural behavior and lifetime. This approach is referred to as numerical structural monitoring and may
be supported by results of in-situ monitoring. Numerical structural monitoring is based on nonlinear
structural analysis considering the comprehensive load and modification process. This process gen-
erally depends on uncertain data which are assessed by means of imprecise probabilities. Here, the
imprecision is modeled with fuzzy parameters. This leads to the generalized uncertainty model fuzzy
randomness representing the basis for the uncertainty measure fuzzy probability. A fuzzy stochastic
analysis considering time-variant uncertain data has been developed to take into account fuzzy random-
ness of the load and modification process within the numerical structural analysis.
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1 Introduction

Structural health monitoring means the lifetime-oriented analysis of structures. Extending the conven-
tional in-situ monitoring which bases on experimental analysis the approach introduced here focus on
numerical structural analysis. This approach is referred to as numerical structural monitoring and en-
ables a profound estimation of future structural behavior beside the computational reproduction of the oc-
curred load and modification process. As a result, prognoses of the time-dependent structural behavior
and safety are provided. Thus, reasonable statements on necessity, kind, and benefit of reconstructions
can be made.

Numerical structural monitoring may be accompanied by in-situ-monitoring. Thereby, structural re-
sponses such as displacement of certain structural points are measured continuously or in intervals, [1].
However, in-situ monitoring is expensive and complex in comparison to a numerical structural analysis,
[5]. Determining the results of interest by numerical structural analysis can reduce the total expenditure
of structural health monitoring. Furthermore, adulterating influences can be detected comparing results
of both, numerical and in-situ monitoring.

Considering bridges as an example, the measurement of displacement requires the blocking of the
transport link and expensive static and dynamic load tests. Without obstructions of traffic, the damage
state can only be detected integrally by analysis of the eigenfrequency and/or stiffness. However, this
method is unable to capture each local effect in detail which may cause an exceeding of limit states,
[10]. A combination of in-situ and numerical monitoring could cover these failure points as well.

To analyze the structure realistically, the complete structural process needs to be considered. This
includes, e.g., time-dependent changes in material, geometry, and loading. The consideration of the
load and modification process requires an applicable, in general numerical static and dynamic analysis
which captures geometrical and physical nonlinearities, enables load-path-dependent material models,
includes long-term effects as aging and damage, and admits the modeling of arbitrary system modifica-
tions.

In general, parameters of structural processes are uncertain. The uncertainty results from various rea-
sons, e.g., external loads caused by different independent events are modeled with only a few load pa-
rameters without reflecting the exact time and space dependency. Strengths of materials are assessed
integrally disregarding the space-dependent microstructure. Geometrical measured data are subjected
to inaccuracies. Frequently, variables are described utilizing subjective assumptions. In consequence, it
is important to consider uncertainty in numerical structural monitoring. The description of uncertain vari-
ables is traditionally realized by stochastic data models. However, parameters of structural processes
often possess properties which require generalized uncertainty models. Especially, if only few sample
elements are available for a parameter, and the samples are not gained under constant conditions a
pure stochastic approach is inappropriate.

In this paper the generalized uncertainty model fuzzy randomness, which includes fuzziness and ran-
domness as special cases, is presented. After some remarks on structural processes in section 2.1
the uncertainty models randomness, fuzziness, and fuzzy randomness are summarized in section 2.2.
The mathematical basis of fuzzy and fuzzy random functions to describe the discontinuous structural
process follows in section 2.3. The procedure of numerical monitoring is outlined in section 3. Defini-
tions of structural indicators in section 3.1 enable an assessment of structural processes. The numerical
realization is explained in section 3.2. The application of the presented approach is demonstrated by a
T-beam bridge in section 4.

2 Uncertain processes within the numerical structural monitoring

2.1 Structural process and structural modification

A structure is subject to numerous alterations during its lifetime. These structural alterations are referred
to as “structural modification”. The structural modification may result from sequence of different states
during construction, changes in geometry and material, e.g., due to physical and chemical processes
or changes in load, and accidental actions. It comprises cross section modification and modification of
structural members and support conditions [3].
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Because of its time-dependency, the entirety of loads and structural modifications constitutes the discon-
tinuous structural process. Analyzing a structure during the lifetime close to reality requires considering
the complete structural process. The analysis leads to time-dependent, discontinuous result processes

z(t) = f
(
g(t) , p(t) , A(t) , I(t) , E(t)

)
(1)

with
z(t) structural responses (e.g., displacements and internal forces)
g(t) dead load
p(t) static and dynamic external loads
A(t), I(t) parameters of geometry (e.g., cross sections, dimensions of the system, location of

the reinforcement, and the prestressing elements)
E(t) material parameters
t = (θ,τ,ϕ) spatial coordinates θ = (θ1,θ2,θ3), time τ, further parameters ϕ, e.g., temperature.

2.2 Remarks on uncertainty

The data uncertainty of the structural process have to be modeled according to there origin in order to
obtain meaningful results [6]. The mathematical models

– Randomness

– Fuzziness

– Fuzzy randomness

are appropriate to describe data uncertainty (see Figure 1). Thereby, fuzziness and randomness are
considered as special cases of the generalized model fuzzy randomness that encloses both stochastic
and non-stochastic properties of parameters.
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Figure 1: Mathematical models of uncertainty

The selection of the model depends on the available data. If sufficient statistical data exist, a param-
eter is usually described stochastically. Thereby, the choice of the type of the probability distribution
function affects the result considerably. However, the type of the probability distribution function cannot
be determined definitely also in the case of large samples. Thus, the assumptions of the type bases
partly on subjective assessments. Moreover, the data for parameters are frequently fragmentary and
imprecise. Then, describing the uncertainty with the model fuzzy randomness is recommended. Fuzzy
randomness is also suitable if, e.g., reproduction conditions vary during the period of observation, or if
expert knowledge complements the statistical evaluable material.

2.3 Uncertain processes in lifetime

Uncertain parameters of the structural process may be quantified as random, fuzzy, and fuzzy random
variables according to the selected uncertainty model. In the case of time-dependency the parameters
are described mathematically by random, fuzzy, and fuzzy random processes. Some basics to fuzzy
and fuzzy random processes are outlined in the following. Thereby, fuzzy random processes contain the
established random processes as a special case.

Fuzzy Processes. A time-dependent fuzzy structural parameter x̃(τ) may be understood as fuzzy pro-
cess x̃(τ), whose functional values are fuzzy values x̃τ ∈ F(X) for each argument τ, see [2, 6].

x̃(τ) = {x̃τ = x̃(τ) ∀ τ | x̃τ ∈ F(X)} (2)
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Fuzzy processes x̃(τ) may be described with the aid of a crisp functional relationship in dependency of
fuzzy bunch parameters s̃ and the time τ. Therewith, the fuzzy bunch parameter representation of fuzzy
processes is obtained.

x̃(τ) = x(s̃,τ) = {x̃τ = x(s̃,τ) ∀ τ | x̃τ ∈ F(X)} (3)

Each real vector of bunch parameters s ∈ s̃ with membership values µ(s) (Figure 1b) determines a
real-valued process x(τ) = x(s,τ) ∈ x̃(τ) with membership µ(x(τ)) = µ(s). Thus, fuzzy processes may
be interpreted as a fuzzy set of all real-valued processes x(τ) ∈ x̃(τ). These real-valued processes
x(τ) ∈ x̃(τ) are referred to as trajectories of the fuzzy process.

A one-dimensional fuzzy process is demonstrated by

x̃(t) = x(s̃, t) = ã · sin
(
ω̃0 · t+ b̃

)
with s̃ = {ã, ω̃0, b̃}. (4)

This process depends on the fuzzy bunch parameters ã = 〈0.9; 1.0; 1.1〉 (fuzzy amplitude), ω̃0 =
〈0.9; 1.0; 1.1〉 (fuzzy frequency), and b̃ = 〈−0.1; 0.0; 0.1〉 (fuzzy phase shift). Selected real-valued pro-
cesses are shown in Figure 2a for four specific combinations of a, ω0 and b. In contrast to this continu-
ous representation, a discretized fuzzy process with the fuzzy functional values x̃τ1 , . . . , x̃τ5 is shown in
Figure 2b.
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(a) Fuzzy process in fuzzy bunch parameter representation (b) Discretisized fuzzy process

Figure 2: Fuzzy processes

Both fuzzy bunch parameters s̃ of the time-dependent fuzzy input parameters x(s̃, t) and the discrete
fuzzy functional values {x̃τ ∈ F(X)} may be considered as input parameters.

Fuzzy Random Processes. Structural parameters which exhibit both fuzziness and randomness are
modeled with fuzzy random variables X̃ or, in the case of time-dependency, with fuzzy random processes

X̃(τ) =
{

X̃τ = X̃(τ) ∀ τ
}

, (5)

see [6, 11]. The functional values of a fuzzy random process X̃(τ) are fuzzy random variables. At each
time point τ the fuzzy random variables X̃τ may be described by means of a fuzzy probability density
function f(x, s̃,τ) (see Figure 1c) and the respective fuzzy probability distribution function F(x, s̃,τ). A
fuzzy probability distribution function at a specific time point τ1 is a fuzzy function. Figure 3 illustrates a
GAUSSian distributed fuzzy probability distribution function F(x, s̃,τ1) of a time-dependent fuzzy structural
parameter X̃(τ1) at time τ1 which depends on the fuzzy standard deviation σ̃ and fuzzy mean value m̃x.
In general, modeling of the distribution parameters as fuzzy values σ̃, m̃x is based on uncertain data
analysis and subjective assessment. The fuzzy values are combined to the fuzzy bunch parameter
vector s̃ = (σ̃, m̃x). Then, the fuzzy probability distribution function of a GAUSSian distribution reads

Fτ (x, s̃) =
1

σ̃ ·
√

2π
·
∫ x

−∞

e
−

1
2
·

(x− m̃x

σ̃

)2

dx (6)
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and represents the assessed set (fuzzy set) of all possible real-valued probability distribution functions.
The fuzzy bunch parameter representation of fuzzy probability distribution functions might be applied
independently of the distribution type, e.g., WEIBULL, GUMBEL, beta, and exponential distributions may
be modeled as well.
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Figure 3: Fuzzy probability distribution function of the fuzzy random design parameter X̃τ1

Numerical processing of a fuzzy random process X̃(τ) = X(s̃,τ) requires the discretization of their time
argument τ, see section 3.2.

3 Indicators and algorithms for numerical structural monitoring

Monitoring is the sequential gathering of information about the structural state and load exposure over
the time. The intention of monitoring is to detect changes in bearing capacity, indicate deterioration,
and plan necessary reconstructions. State-of-the-art is in-situ monitoring which allows the subsequent
interpretation of the occurred structural processes and a respective assessment.

An alternative or rather addition to in-situ monitoring is the prognostic numerical structural monitoring.
Thereby, a prognosis of the expected structural behavior is made on the basis of numerical structural
analysis. Different paths of structural behavior could be simulated under assumption of potential scenar-
ios, e.g., consequences of conversions, different prognoses on load trends, several kinds of modification
processes, etc. This enables the qualitative and quantitative assessment of potential reconstruction
measures and the respective appropriate point in time. Advantageously, numerical monitoring can al-
ways be performed, independently from real time.

3.1 Indicators for the assessment of uncertain structural processes

In principle, monitoring aims at the assessment of the necessity of reconstruction and the respective
point in time. To establish objective criteria for a decision, indicators are introduced. These indicators
should reflect all available information about the time-dependent structural behavior. Due to the fact that
these indicators assess uncertain processes, they are obtained time-dependent and uncertain as well.
The criteria for the assessment of the necessity of reconstruction are defined by requirements regarding
the bearing capacity and serviceability.

One approach is to apply the time-dependent reliability. This indicator enables, e.g., the assessment
of the damage state of a structure under consideration of longterm material behavior, the influence of
modification processes, the consideration of conversions, etc. Advantageously, this indicator represents
inherently a sophisticated measure to support the determination of the date of reconstruction. The
time-dependent reliability is quantified by the fuzzy failure probability [7]

P̃f (τ) =
∫

x|gτ(s̃,x)≤0
fτ (s̃,x) dx. (7)
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An alternative indicator, to evaluate the structural state, is the robustness indicator. Robustness is
determined, analogous to [12], by analyzing the influence of variations within the input parameters on
the variations of the result parameters. According to [4], a structure is denoted as robust, if it result
parameters are affected marginally by variations of input parameters. The time-dependent robustness
of structures, in this approach considered for fuzzy processes only, is assessed by the indicator

IR (τ) =
Mx (τ)
Mz (τ)

=

n

∑
k=1

Mxk (τ)

m

∑
j=1

Mzj (τ)
. (8)

In eq. (8) the influence of the uncertainty of n structural input parameters x̃(τ) on the uncertainty of
m structural responses z̃(τ) is obtained. Thereby, the time-dependent parameters and results are dis-
cretized in time. An uncertainty measure Mx of a fuzzy number x̃ can be defined for instance on the
basis of SHANNON’s entropy

Mx : Hu =−
x=+∞∫
x=−∞

[
µ(x) · lnµ(x)+

(
1−µ(x)

)
· ln
(
1−µ(x)

)]
dx, (9a)

as well as the zeroth moment

Mx : A =
x=+∞∫
x=−∞

µ(x)dx (9b)

or the second central moment

Mx : V =
x=+∞∫
x=−∞

(x−x)2 ·µ(x)dx ·

x=+∞∫
x=−∞

µ(x)dx

−1

(9c)

by means of the first moment

x =
x=+∞∫
x=−∞

x ·µ(x)dx ·

x=+∞∫
x=−∞

µ(x)dx

−1

(10)

of the time-dependent fuzzy set x̃(τ).

3.2 Numerical simulation

If the uncertainty of the input parameters of a structural analysis is modeled with the aid of fuzzy random
functions, the fuzzy stochastic analysis

FFSA : X̃(t)→ Z̃(t). (11)

is then to be solved. The fuzzy random functions (structural input parameters) X̃(t) are mapped onto the
fuzzy random functions (structural responses) Z̃(t). As fuzzy functions and real random functions are
special cases of fuzzy random functions, these uncertainty models are also incorporated in eq. (11).

To solve this problem numerically the fuzzy stochastic input parameters X̃(t) have to be discretized at
points ti in parameter space T. The fuzzy stochastic analysis has to be performed for every discrete
input vector X̃ti = X̃

(
ti
)

which leads to a response vector Z̃ti = Z̃
(
ti
)
.

For a fuzzy stochastic vector X̃, eq. (11) can be rewritten by

Z̃ =
(
Z̃1, . . . , Z̃j, . . . , Z̃m

)
= f
(
X̃1, . . . , X̃k, . . . , X̃n

)
(12)

whereas f(.) represents the mapping model of the fuzzy stochastic analysis.
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The fuzzy stochastic structural analysis bases on the bunch parameter representation of fuzzy random
variables and is described in detail in [6, 9, 11]. Fuzzy random input variables X̃ = X(s̃) as well as fuzzy
random result variables Z̃ = Z(σ̃) are expressed in dependency of fuzzy bunch parameter s̃ respectively
σ̃. Therewith, eq. (12) is transformed into the mapping

σ̃ =
(
σ̃1, . . . , σ̃j, . . . , σ̃m1

)
= m(s̃1, . . . , s̃k, . . . , s̃n1) (13)

Applying α-discretization [8] to the fuzzy bunch parameters, an optimization problem is solved in order
to determine the α-level sets of the fuzzy bunch parameters (σ̃1, σ̃2, ..., σ̃m1). This algorithm is referred
to as fuzzy analysis and described, e.g., in [6]. Each point of the input α-level sets leads to a stochas-
tic analysis. Within the stochastic analysis, e.g., applying the Monte Carlo simulation, a deterministic
fundamental solution d(.) is processed repeatedly. Therewith a three-loop computational algorithm is
constituted, Figure 4.

fuzzy analysis

stochastic analysis

deterministic computational analysisd

( )SA
F d

( )( )FA SA
F F d

Figure 4: Fuzzy stochastic analysis FFSA

The fuzzy analysis in combination with the Monte Carlo simulation is referred to as Fuzzy Monte Carlo
simulation (FMCS), [11].

4 Example

The application of an uncertain numerical monitoring is demonstrated for a reinforced concrete two-field
T-beam bridge (Figure 5). Under consideration of a time-dependent structural deterioration the safety
level of the ultimate load as well as the robustness of the safety level are determined.
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1
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0.15 q

g

Figure 5: Geometry of reinforced concrete bridge

The bridge is computed with LS-DYNA and LS-PrePost. Thereby, the reinforcement in midspan and
support is modeled by 232 two-dimensional shell elements, see Figure 6a. The concrete parts are
modeled by 1536 three-dimensional solid elements, see Figure 6b. An elasto-plastic approach is applied
for describing the material parameters.

(a) location of reinforcement (b) FE model

Figure 6: Model of the bridge in LS-PrePost
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The results are basically affected by the concrete compressive strength fc, the yield strength of reinforce-
ment fy, and the external loads q. Due to the fact that only rare and imprecise data are available, which
impedes the specification of an unique stochastic model, the generalized uncertainty model fuzzy ran-
domness is applied. Thereby, the parameters of the fuzzy stochastic distribution functions are modeled
by fuzzy triangular numbers

〈
xl,α=0, xα=1, xr,α=0

〉
, Table 1.

Table 1: Fuzzy random design parameters
distribution

type par 1 par 2 par 3
concrete
compressive
strength[
N/mm2

] fc log-normal µx = 43 σx = 〈2.5, 3.5, 4.5〉 x0 = 25

yield strength
of reinforce-
ment[
N/mm2

] fy log-normal µx = 540 σx = 〈23, 33, 43〉 x0 = 450

external
loads [kN] q Gumbel a = 110.83 b = 16.67 n = 100

The structure is subjected to its dead load g as well as the external loads q. Dynamic influences on the
external loads are considered by the introduction of a statical vibration coefficient.

In numerical monitoring it is essential to capture time-dependent influences on the structure. An impor-
tant one is the deterioration, for instance, as result of environmental exposures. However, the structural
damage is affected by various influences that can not be determined exactly. In consequence, the
deterioration is modeled by a fuzzy process

d̃K (τ) = dK (τ, s̃) = e
−

τ∫
0

χ(t,s̃)dt
(14)

which acts on the global stiffness matrix, Figure 7. Thereby, the fuzzy process χ (τ, s̃) is determined as

χ (τ, s̃) =


0.015 · e−0.1238·τ·s̃ if τ≤ τ1/s̃
10−3 if τ1/s̃ < τ≤ τ2

10−3 + 1
1.640.000

(
e0.0323·τ/s̃− e0.0323·τ2/s̃

)
if τ > τ2

(15)

with τ1 = 22 and τ2 = 100 years and the bunch parameter s̃ = 〈0.808, 1.0, 1.205〉.
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Figure 7: Deterioration described by a fuzzy process

© 2008 Copyright by DYNAmore GmbH

Optimierung I

F - I - 8



7. LS-DYNA Anwenderforum, Bamberg 2008

The deterioration is modeled in an inverse way as load curve in the LS-DYNA keyword file. In this sense
LS-DYNA is used for numercial simulation of the bridge over the lifetime, including collapse. In Figure 8
the deformed model is shown before and after exeeding serviceability, for a specific realization of fc, fy,
and q.

(a) deformation before breakdown (b) collapse

Figure 8: Deformed FE model for specific realizations of the input parameters

A lifetime-orientated design aims among others on defining the lifetime. Therefore, an assessment
of the structural reliability is performed by analyzing the fuzzy reliability index β̃ (τ), Figure 9. Due to
the time-dependence of input parameters the reliability alters over the lifetime. Introducing permissible
limits of reliability measures such as the failure probability, e.g., predefined in building codes, a fuzzy
lifetime L̃ can be determined. A reliable utilization of the structure in this example is prognosticated for
〈111, 149, 182〉 years.
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Figure 9: Fuzzy reliability index

Additionally quantifying the influence of the non-stochastic uncertainty the robustness of the reliability
measure β̃ (τ) is evaluated with the robustness measures IR (τ) according to section 3.1, see Figure 10.

The structural indicators recorded with the aid of numerical structural monitoring facilitate the evaluation
of the structural state at arbitrary points in time. The prediction of a lifetime enables the determination of
a reliable service time.
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Figure 10: Robustness indicator
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