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Abstract:

The repeated performance of structural analysis, e.g., within a reliability based optimization, for real-
world problems require a high computational effort. Due to the complexity of the real-world investiga-
tions, which are based on sophisticated Finite Element analyses of large nonlinear systems, a partic-
ularly efficient form of an approximation scheme is required. In this paper the improvement of the nu-
merical efficiency utilizing neural network based approximation schemes are discussed. Therefore the
theoretical basics of neural networks are introduced. A further improvement of the approximation qual-
ity is obtained with network based approximation schemes. Beside committee machines and network
composites, a section-wise application of neural networks is presented. The developments are demon-
strated by means of numerical examples to emphasize their features and by a practical, industrial-sized
example to underline their applicability.
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1 Introduction

A reliability based optimization of industrial-sized problems is a current engineering challenge. This
presupposes the coupling of optimization methods and computational schemes for processing relia-
bility analysis with algorithm for deterministic fundamental solutions. A plain application in its crude
form is not feasible; an increase of the numerical efficiency of the simulation is required. This can be
achieved by improving the numerical efficiency of the respective approaches. However, this is hindered
by the tremendous computational cost for the deterministic fundamental solution. Despite consider-
able advances, a further increase of numerical efficiency is still a central demanding issue for generally
enabling the reliability based optimization of large, industry-sized structures. For solution a response
surface approximation seems to be most appropriate.

A response surface (RS) approximation with the aid of neural networks [2] is implemented in a reliabil-
ity based optimization procedure to replace the numerically expensive FE analysis by a fast surrogate
model. This possesses a high degree of generality and flexibility and is capable of eliminating noise
from the raw data. Section 2 is devoted to elucidating the neural network concept for function approxi-
mation. A multi-layer perceptron network with feed-forward architecture is selected as the basic network
form. For industrial-sized problems a simple form of a neural network may not be sufficient to capture
the properties of the underlying computational model with an appropriate quality. For the solution two
strategies are appropriate to remedy this insufficiency.

First, several neural networks are combined to construct approximation machines following different
philosophies. Committee machines are formulated with a parallel structure of individual networks to
eliminate noise by averaging the network outputs. Network composites are designed to sequentially
reduce the approximation error by training only one network on the initial data and successively applying
further networks on the error from the previous approximation step.

Second, a patchwork approximation is investigated to improve the approximation quality of local function
features. A neural network is applied only localized to limited parts of the response surface. In depen-
dence of the availability of experimental points a distinction between an integrated and a purely applied
patchwork approximation may be done. Whereas for a purely applied patchwork approximation the
supporting points of the respective patch-networks are predefined, in an integrated patchwork approxi-
mation the experimental points are adjusted to the requirements of the patch-networks. As a result the
patchwork approximation is performed with appropriate supporting points, arranged in an advantageous
manner. Thus the number of input-output pairs is reduced to a small amount.

In Section 4 the capabilities of analyses with a neural network based response surface approximation
are demonstrated by means of a numerical example. Finally, advantages of patchwork approximations
are demonstrated for an industrial-sized example.

2 Neural network based response surface approximation

2.1 Basic idea

The computational cost of a reliability based optimization of an industrial-sized problem is almost com-
pletely caused by the nonlinear FE analysis. Thus, the most effective measure to increase the numerical
efficiency is to replace the costly deterministic computational model (M : x → z) by a fast approxima-
tion solution based on a reasonable amount of initial deterministic computational results

[
xT ; zT

]
. The

reliability based optimization can then be performed with that surrogate model, which enables the uti-
lization of an appropriate sample size for the simulation. The surrogate model is designed to describe
a functional dependency between the structural parameters x and the structural responses z in the form
of a response surface approximation, see Eq. (1). Due to a processing with the aid of the activation
function, the structural quantities x, z are transferred to input and output signals of the neural network
xsig = fx(x), zsig = fz(z).

zsig = fRS(xsig) . (1)

For response surface approximation a variety of options exist; see [5, 7]. The suitability of the particular
developments primarily depends on the properties of the computational model. Due to the very gen-
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eral properties of the FE analysis, which can hardly be limited to convenient cases, a high degree of
generality and flexibility of the approximation is demanded. In this context, a neural network provides a
powerful basis for response surface approximation. This can extract information from initial deterministic
computational results and can subsequently reproduce the structural response based on the extracted
information only. According to the universal function approximation theorem, neural networks are capa-
ble of uniformly approximating any kind of nonlinear functions over a compact domain of definition to any
degree of accuracy. That is, there is virtually no restriction for a response surface approximation with
the aid of neural networks.

2.2 Network constitution

The construct of an artificial neural network is based on the design of the human brain. It is constituted by
information-processing units – so called neurons, which are connected by synapses. A specific network
architecture is built by combining these two main components according to a particular structure; see
Fig. 1. Generally, it is reasonable to search for a neural network structure that is simple and clearly
arranged while it yields reliable results. A feedforward architecture is selected as the basis, which has
already been demonstrated as useful in solving various engineering problems of different kind.

In the network, each synapse connects two neurons with each other. It enables the signal flow from one
neuron to the next one. Each neuron contains a summing junction ν , which lumps together the incoming
signals xsig, each one weighted by a specific synaptic weight w. The summation of input signals for
neuron k, see Eq. (2), involves an additional external parameter called bias b,

νk =
m

∑
j=1

wk jx j +bk . (2)

The weights w and the bias b allow the neuron to be adjusted to the particular problem. Their specific
values are determined during the network training. This is performed on the basis of the error back-
propagation algorithm; see [2]. The result ν from the summing in Eq. (2) is the input argument for
the subsequently called activation function ϕ(.), which produces the output zk of the neuron. Different
types of activation functions are available such as threshold functions, piecewise linear functions and
sigmoidal functions. In view of the training of the network, it is advantageous to implement differentiable
activation functions. The most popular activation function is the logistic sigmoid function

ϕ (νk) =
1

1+ exp(−νk)
, (3)

which is selected for the further consideration.

(a) Construct of a neuron (b) Feedforward neural network

Figure 1: Constitution of a neural network

The neurons are arranged in a layered structure to form a multi-layer feedforward neural network, see
Fig. 1. According to the feedforward philosophy, this permits a signal flow exclusively in forward direction
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through the network. The layers are referred to as input layer, L = 1, hidden layers, L = 2, ..., m−1, and
output layer, L = m. For a neural network with L = 4 the output signal zsig is determined with

zsig = ϕ

(
J(3)

∑

j(3)=1

[
w j(4), j(3) ·ϕ

(
v j(3)

)]
+b j(4)

)

v j(3) =
J(2)

∑

j(2)=1

[
w j(3), j(2) ·ϕ

(
J(1)

∑

j(1)=1

[
w j(2), j(1) · x j

]
+b j(2)

)]
+b j(3) .

(4)

In Eq. (4) the term J(L) denotes the number of neurons of the layer L, w j(L) j(L−1) is the synaptic weight
of neuron j(L−1) between the layer L−1 and the neuron j(L) of the layer L for L = 1, . . . , m. The number
of input and output signals determines the number of the neurons of the input and the output layer,
respectively. The number of hidden layers and the number of neurons in the hidden layers have to be
specified in dependence on the particular problem. This represents an optimization problem, which may
be solved with the objective of an optimum training behavior and optimum training result.

2.3 Training of neural networks

The adjustment of the synaptic weights w is commonly called the training of the neural network. These
values are adjusted during the training phase of the neural network depending on the particular problem.
The knowledge represented by a neural network after the training is stored in its synaptic weights. For
the training procedure the back propagation algorithm is applied, which requires an existing data set. A
training data set consists of training samples with a number of pairs of structural parameters (input vector
xT ) and corresponding structural responses (output vector zT ). These samples have to be determined
in advance by a repeated evaluation of the deterministic fundamental solution (mapping model M). In
a first step an input vector xsig is presented to the neural network and the associated neural network
response zsig is computed. The approximation error

ek = zT,k− zsig ∀ zT,k ∈ z (5)

is determined. The errors ek of all neurons mk of the output layer are summarized with

ε =
1
2

mk

∑
k=1

e2
k . (6)

The synaptic weights are modified to minimize the objective function Eq. (6) with a gradient based
approach whereas the adjustment is proportional to the gradient ∂ε/∂w. A comprehensive overview of
the back propagation algorithm is provided in [2].

3 Network-based approximation schemes

In the case of complicated dependencies between input and output data – as appears in the response
surface approximation for real-world problems – a simple form of a neural network may not be suffi-
cient to capture the properties of the underlying computational model with an appropriate quality. A
further improvement of the approximation quality is required. Beyond an increase of the complexity of
an individual neural network by adding more hidden layers and/or neurons, several neural networks may
be combined to construct approximation machines according to different philosophies. Another viable
concept targets on an approximation scheme oriented to local function features of the response surface.

3.1 Committee machines and network composites

Committee machines are formulated with a parallel structure of individual neural networks f (i)
RS . Each net-

work is separately applied to the same approximation problem with the same input-output pairs
[
xT ; zT

]
.

As the specification of a particular network and the network training is affected by random influences, a
neural network solution for response surface approximation is generally not unique. That is, the n−fold
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application of a neural network leads to n different response surface approximations. This effect ap-
pears, in particular, if the underlying data exhibit noise, for example, due to numerical sensitivities. It
is thus reasonable to finally eliminate those noise effects by averaging the outputs z(i) = f (i)

RS (x) of the
individual networks f (i)

RS of the committee machine (Eq. (7)).

z =
1
n

n

∑
i=1

z(i) (7)

Network composites [1], as another approximation scheme, are focused on the simultaneous represen-
tation of local and global function features. A first neural network f (1)

RS is trained to capture the global
trend of the response surface reflected in the initial training data set

[
xT ; zT

]
. Then, the remaining ap-

proximation error is computed e = zT − z(1). The error surface primarily reflects local function features,
which have not been captured by the first network f (1)

RS . A second network f (2)
RS is then trained on the

error surface with the data set
[
xT ; zT − z(1)

]
and can so concentrate on the local function features only.

The sum of the network outputs then yields an improved approximation (Eq. (8)). This scheme may be
applied further to sequentially reduce the approximation error. Therefore the training data set is updated

for each network f (i)
RS to

[
xT ; zT −

i−1
∑

q=1
z(q)

]
. The result z is obtained as the sum of output z(i) = f (i)

RS (x) of

the individual networks f (i)
RS , see Eq. (8).

z =
n

∑
i=1

z(i) (8)

3.2 Patchwork approximation

The quality of a response surface approximation may be improved by approximating local function fea-
tures. With a section-wise application of response surface approximations a patchwork-like result is
obtained. Thereby, the design of a patch is not bounded to any requirements. It may be best constituted
in dependence of the respective problem and the available set of input-output pairs. The approximation
of the response surface within a patch may be performed with arbitrary approximation schemes. Gen-
erally, for real-world problems the behavior of local parts of the response surface are less complex than
the function features of the complete response surface. Thus, the requirements onto an approximation
scheme of local function features is less rigorous. To preserve a high degree of generality and flexi-
bility an application of neural networks is reasonable. If the supporting points of a patch-network are
determined in combination with the patchwork approximations, an beneficial union is established. This
is referred to as an integrated patchwork approximation. However, for an predefined set of input-output
pairs a pure patchwork approximation is also enabled.

In an integrated patchwork approximation the design of experiments is adjusted to the requirements of
the patch-network. In dependence of the required approximation quality the number of input-output pairs
is predefined. Furthermore, the constitution of the patch-size is adjustable to the respective problem.
Generally, the user-defined specifications may increase the approximation quality on the one hand, but
on the other hand it always augment the number of deterministic fundamental solutions. The size of
a patch may be determined in dependence of the initial size of the input space X(i) ⊂ Rn, see Eq. (9).
Thereby, a scales the size of the patch and n denotes the number of individual patch-networks.

p(i) = a ·∆x | i = 1, . . . , n (9)

To optimize the local approximation quality, the patches are specified online so that the point of interest
for the approximation in each case coincides with the center of gravity of the patch. If a patch does
not contain a minimum number of input-output points, the point of interest is evaluated with the aid of
the computational model M for structural analysis. This leads to a moderate supplementation of the
available set of input-output pairs in sparsely populated domains. Due to an integrated determination
of the supporting points for a patch-network the number of input-output pairs is reduced to a minimal
amount.
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A pure patchwork approximation utilizes an available set of input-output pairs. In the neighborhood of
the point of interest a predefined number of input-output pairs, which are closest to the point of interest,
are determined with the aid of the euclidean distance. Thus, the patch-size depends on the distribution
of the input-output pairs. The point of interest is obligatory not the center of gravity. A point of interest,
situated in a sparsely populated domain, is analyzed without an adequate set of input-output pairs.

In view of the numerical efficiency of patchwork approximation the limitation of the network approxima-
tion to small patches and subsets of the initial data enables the application of small neural networks.
Consequently, the training is associated with a low numerical cost. Otherwise, within a patchwork ap-
proximation the neural networks have to be trained several times. The repetition of the training is linked
to an increase of the computational cost. This becomes important if a high number of points have to
be evaluated, e.g., in reliability analysis utilizing Monte Carlo simulation. The numerical efficiency can
be improved by re-using patch networks for further points of interest. Thereby it may be demanded,
that the new point of interest x have to be situated, in relation to the center of gravity of a still trained
patch-network p(i), within a predefined distance.

4 Examples

4.1 Benchmark study for patchwork approximation

The patchwork approximation is demonstrated by means of a numerical example. The aim of the inves-
tigation is to compare a single network with a patch-network. The constitution of the neural networks
with L = 3 and J(2) = 2 (Section 2.2) is kept simple for the purpose of visualization. The function z(x) of
interest (Fig. 2) can be expressed mathematically with

e(a, b, c, x) = c · exp
[
−1

2
(x1−a)2− 1

2
(x2−b)2

]
(10)

z(x) = e(2, 2, 9, x)+ e(8, 3, 15, x)+ e(4, 8, 12, x)+
(x1−5) · (x2−5)

4
+ rand() . (11)

(a) Single neural network (b) Patchwork approximation

Figure 2: Single neural network vs. patchwork approximations of z(x)

For a set of 100 input-output pairs the respective response surfaces are approximated (Fig. 2). It is obvi-
ous, that a simple single neural network is hindered to reflect the characteristic parts of the performance
function. The neural network provide only the potential to give an account of the global trend of the
response surface. That can be elucidated under consideration of the network constitution. In contrast,
a patchwork approximation with the same network constitution approximates the performance function
with an appropriate quality. Even the local characteristics identified with the patchwork approach, which
is of importance especially in reliability analysis. Assigning the results to real-world problems, it may be
concluded, that the patchwork approach is capable of improving the approximation quality utilizing the
same network constitution.
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4.2 Benchmark study for an integrated patchwork approximation

The discussed approximation schemes are applied to a reliability analysis with a numerical example
to verify their capabilities. For this purpose the computational model is substituted by the predefined
function

z(x) = 8 · exp
(
−
(
x2

1 + x2
2
))

+2 · exp
(
−
(
(x1−5)2 +(x2−4)2

))
+1+

x1 · x2

10
. (12)

Both input variables x1 and x2 are modeled as random variables X1 and X2, respectively, with a normal
distribution, the expected value µ = 2.7, and the standard deviation σ = 1.0. The failure criterion is
specified with the limit state function g(x) = 8.7− z(x). Failure occurs for g(x) ≤ 0 ; see Fig. 3. The
reliability analysis is performed with the aid of a direct Monte Carlo simulation (MCS) to determine the
failure probability. As a small failure probability is expected, the total number of evaluated points is
predefined with 1,000,000.

To reduce the number of deterministic solutions the Monte Carlo simulation is performed with the aid
of neural network based response surface approximation. In this example three different approxima-
tion schemes are realized: single network, network composite, and patchwork-like approximation; see
Section 3. As in the example above (Section 4.1) the constitution of the network is kept simple. The
network-based approximation functions for z(x) via a single network and a network composite cannot
capture the behavior of z(x) over the failure domain to a sufficient degree of accuracy; see Fig. 3. This
would lead to a failure probability estimation of P̂f = 0.

(a) Performance function (b) Single network (c) Composite network

Figure 3: Neural network approximations of z(x)

On this account the patchwork approximation with neural networks is applied to improve the approxi-
mation quality over the failure domain. The determination of the input-output pairs for the supporting
points of the respective patch-networks are integrated into the patchwork application. At least five points
are required for the approximation of z(x) within a patch. The size p j of the patches, see Section 3.2,
are defined in dependence on the maximum size of the available set of points xT with actually known
functional values z(xT ). To validate the results, the failure probability estimation is repeated 50 times,
and the mean value P̂f as well as the standard deviation σP̂f

is listed in Table 1.

In order to assess the quality of the result a reference solution is generated with direct Monte Carlo
simulation utilizing the actual function z(x) according to Eq. (12). It becomes obvious that the patchwork-
like response surface approximation can achieve a computational effort that may enable a reliability
analysis with a nonlinear FE simulation. This needs only 1,000 actual evaluations of z(x) to achieve a
reasonable quality of the result.

Table 1: Mean value P̂f and standard deviation σP̂f
of the estimated failure probabilities

Sampling method/ total sample size failure probability P̂f Standard deviation σP̂f

Direct MCS
N = 10

6
1.380 ·10−5 3.224 ·106

Direct MCS with patchwork RS approximation
N = 6,800, a = 0.03 1.167 ·10−5 3.228 ·10−6

N = 3,000, a = 0.05 1.067 ·10−5 3.740 ·10−6

N = 1,000, a = 0.10 1.253 ·10−5 4.657 ·10−6
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4.3 Reliability based optimization of a deep drawing process

In this example a reliability based optimization of a deep drawing process [6], depicted with the deep
drawing device in Fig. 4, is performed. The aim of the investigation is to determine a setting of design
quantities in view of a reliable manufacturing process.

Figure 4: Deep drawing device

Design quantities d, which may be freely selected during the design process, are the mean value of the
binder force d1 and the mean values of the draw bead forces d2, . . . , d7. The respective design ranges
are predefined with intervals; d1 = [1400, 2400], d2 = d3 = d7 = [20, 200], d4 = [50, 120], d5 = [60, 120],
d6 = [70, 130].

The remaining quantities are prescribed and non-alterable. Among all input quantities, sixteen are
indicated to cause the uncertainty of the results and thus to influence the reliability predominantly. The
quantification of the uncertain input parameters, elucidated in detail in [4], is accomplished with the
generalized uncertainty model fuzzy randomness [3], see Table 2. Thereby, it is assumed that the
randomness in respective input parameters is modeled with a normal distribution.

Table 2: Fuzzy random input quantities X̃
fuzzy random quantity

normal distribution
mean value standard deviation

yield strength fy X̃1 0.14 < 0.0067; 0.008; 0.01 >
strength coefficient K X̃2 0.55 < 0.0367; 0.044; 0.055 >
hardening exponent n X̃3 < 0.23; 0.275; 0.3 > 0
friction coefficient µ X̃4 < 0.05; 0.075; 0.1 > 0

perturbation longitudinal p1 X̃5 <−0.005; 0.0; 0.005 > 0
perturbation lateral p2 X̃6 <−0.005; 0.0; 0.005 > 0
material parameter r0 X̃7 2.25 < 0.0833; 0.1; 0.125 >
material parameter r45 X̃8 1.7 < 0.1; 0.12; 0.15 >
material parameter r90 X̃9 2.85 < 0.167; 0.14; 0.175 >

draw bead force 1 X̃10 d2 < 4; 5; 6 >
draw bead force 2 X̃11 d3 < 4; 5; 6 >
draw bead force 3 X̃12 d4 < 4; 5; 6 >
draw bead force 4 X̃13 d5 < 4; 5; 6 >
draw bead force 5 X̃14 d6 < 4; 5; 6 >
draw bead force 6 X̃15 d7 < 4; 5; 6 >

binder force X̃16 d1 < 40; 50; 60 >

As a result of the fuzzy stochastic analysis the fuzzy failure probability P̃f of the maximal shell thickness
reduction z is evaluated. The design constraint for the maximal shell thickness reduction is predefined
with 40%. As the aim of the investigation is to guarantee a reliable manufacturing process, the objective
is to minimize the maximal possible failure probability Pf ,α=0,l of the fuzzy failure probability P̃f .

Facing the time consuming character of a single FE simulation an employment of RS approximation is
inevitable. In an preliminary investigation the applicability of a single neural network approximation and
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a patchwork approximation is tested. Therefore a sparsely set of N = 234 is determined with the aid of
the computational model M. Utilizing such points a response surface approximation is established with
both strategies. To validate the respective approximation quality, 100 input-output pairs are additionally
evaluated. The obtained results are compared with the aspired ones by means of a mean square
error. A single neural network deviates in the mean 9.2% from the apsired result, while a patchwork
approximation diverge 3.8%. Analyzing the results, it appears that the patch-networks approximate
local function features more appropriate, see Table 3 (results are standardized). Considering the low
number of input-output pairs, both approximation schemes provide useful results with an acceptable
approximation quality. By reason of an better mean square error, the reliability based optimization is
performed with the aid of a patchwork approximation.

Table 3: Comparison of selected results
results (standardized) computed with

computational model M single neural network patchwork approximation
22.031 13.950 21.012
25.554 14.765 23.430
26.713 09.013 26.934
14.398 09.134 13.697
17.289 16.246 16.044
26.798 25.634 18.941
20.074 17.648 18.360
17.114 19.029 17.079
19.456 18.746 19.531
19.668 12.808 14.559

The result of the optimal design dopt is depicted in Fig. 5 typified by the fuzzy cumulative distribution
function and the fuzzy failure probability P̃f . Further investigation have to validate the quality of the
obtained optimal design utilizing an enlarged set of input-output pairs.

Figure 5: Fuzzy cumulative distribution function and fuzzy failure probability
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5 Conclusions

The presented investigations demonstrate that neural network based response surface approximation
generally provides a powerful tool to reduce the computational cost for reliability based optimization
problems. With the aid of various approximation schemes the numerical efficiency is improved even
in conjunction with time consuming and complex nonlinear computational models. The concept of re-
sponse surface approximation schemes have been verified with respect to their capabilities in improving
the numerical efficiency. The theoretical investigations have been underlined with an industry-sized ex-
ample of a reliability based optimization of a deep drawing process. Utilizing expensive Finite Element
analyses, patchwork approximations have been revealed as an appropriate solution. This emphasizes
the relevance of network based approximation schemes for engineering practice.
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