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Methods — a Comparative Study
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Abstract:

This paper deals with the application of the response surface method based on neural networks in the
field of engineering. A multi-layer feedforward neural network is employed to replace the underlying
structural analysis. It is trained on a data set from initial computations. The application of the backprop-
agation algorithm for training a neural network requires a decision for a particular training mode. For the
examined examples it is shown that the incremental mode possesses different advantages compared
to the batch mode. Furthermore, an approach to improve the approximation quality given by a neural
network is introduced and demonstrated by means of a numerical example.
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1 Introduction

The structural analysis of complex structures is usually solved by means of a computational model. The
computational model is an abstraction of the structure and its environment including their interactions.
Such a model is used to map structural parameters (e.g. material parameters, geometrical parameters,
loads) onto structural responses (e.g. stresses, displacements, deformations). The complexity of the
model increases the more information it has to contain. In many fields of engineering the Finite Element
method is employed to perform tasks of arbitrary complexity. Structural analysis represents the basis for
the structural design in a variety of approaches.

The values of the structural parameters are generally not predetermined but vary within specific ranges.
This phenomenon is referred to as uncertainty and is accounted for with the aid of an uncertain structural
analysis. For processing uncertain quantities of different characteristics associated numerical proce-
dures are available. These primarily comprise stochastic analysis, fuzzy analysis, and fuzzy stochastic
analysis. In any case, an uncertain structural analysis requires the repeated application of the underly-
ing deterministic computational model. The more complex the model is the higher is the computational
effort needed to perform the computation. This effort may be reduced by simplifying the computational
model and reducing the number of calls of the deterministic computational model. In this context the
use of an adequate approximation of the structural response represents the most effective measure to
achieve a reasonable reduction of the numerical effort. Subsequently, an approximation by means of the
response surface method based on neural networks is elucidated.

2 Neural Network Concept

2.1 Basic idea

The idea of artificial neural networks is based on the design of the human brain. The human brain is
constituted by information-processing units (so called neurons) that are connected by synapses, and it
forms the kernel of the human nervous system. It is capable of processing input signals that are derived
from the environment and of providing appropriate output signals (e.g. certain actions). The advantages
of the human information processing system are complexity, nonlinearity, and parallelism. An artificial
neural network resembles the human brain in many respects. It is constituted by neurons which are con-
nected by synapses, it has the ability of mapping input signals onto output signals and to adapt to certain
tasks during a training phase. The output produced by a neural network is called response surface. The
idea of such a response surface in engineering is then to replace the deterministic computational model
for structural analysis by a neural network. That is, the input signals comprise structural parameters
such as loads, material parameters, and geometrical parameters and the network output provides the
associated response surface in the form of stresses, displacements, or deformations. For this purpose,
the network first needs to learn the features of the underlying deterministic computational model. This
learning is based on initially performed structural analyses.

2.2 Network Architecture

There exist a variety of alternatives to design a neural network, e.g., feedforward neural networks, recur-
rent neural networks, radial basis function networks and committee machines. The focus of this study
is set on feedforward neural networks which are already applied successfully in many fields of engineer-
ing. A specific network architecture is built by combining the two main components of a neural network,
the neurons and the synapses. Each synapse connects two neurons with each other and possesses a
synaptic weight w. It enables the signal flow from one neuron to the next one. A neuron represents an
information processing unit that maps an input signal onto an output signal as illustrated in Fig. 1(a). It
contains a summing junction v which lumps together the incoming signals x, each weighted by a specific
synaptic weight w. The summation of input signals for neuron k (see Eqg. (1)) also involves an external
term called bias b.

Vi = wyxj+ by (1)
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K-11-30 © 2006 Copyright by DYNAmore GmbH



5. LS-DYNA Anwenderforum, Ulm 2006 Robustheit / Optimierung Il

The weights w and the bias » allow the neuron to be adjusted to particular conditions. The summing
junction v is used as input argument for the subsequently called activation function ¢(.), which produces
the output y of the neuron. Different types of activation functions are available, such as threshold function,
piecewise linear function and sigmoidal functions. It is often desired to have a differentiable activation
function (see Sec. 3). In this study further consideration is only given to sigmoidal functions (see Fig. 2)
as the most popular type of activation functions.
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(a) Constitution of a neuron (b) Constitution of a feedforward neural network

Figure 1: Neural network

A multi-layer feedforward neural network (see Fig. 1(b)) permits signal flow exclusively in forward direc-
tion through the network. The neurons are organized in different layers: one input layer, one or more
hidden layers, and one output layer. The produced output y of each neuron of a layer is transmitted to
one or more neurons of the following layer by synaptic connections. Within a fully connected network
every neuron is linked to all neurons of the following layer. Otherwise, if several connections are miss-
ing, the network is referred to as partially connected. Furthermore, it is possible to introduce shortcut
connections between neurons of non-adjacent layers.
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(a) Logistic sigmoid function (b) Sigmoid symmetric function

Figure 2: Sigmoidal activation functions

The output signals y of the neurons of the output layer constitute the response z of the whole neural
network. The number of input and output signals determines the number of the neurons of the input and
the output layer, respectively. The number of hidden layers and the dimensionality of these should be
chosen problem-specific.

neural network
e,

=z (2)
Synaptic weights w are adjustable free parameters of a neural network and have the task to strengthen or
weaken the signals transferred by the synaptic connections. These values are problem-specific adjusted
during the training phase (see Sec. 3) of the neural network. The knowledge represented by a neural
network after the training is stored in its synaptic weights. Usually the training phase is followed by
a validation or testing phase in which the synaptic weights of the network are not changed anymore.

The approximation-quality may be evaluated by calculating an error between the prediction of the neural
network and the desired output.
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3 Comparison of Training Algorithms

3.1 General Aspects of Backpropagation

The iterative process of adjustment of weights of a neural network is called training. The aim is to derive a
neural network response that approximates the underlying data set with a maximum quality. There exist
a variety of different methods to train a neural network. In this study the focus is on the backpropagation
algorithm as one form of supervised error-correction learning. This algorithm requires training data in
form of input-output pairs that are obtained by repeatedly applying the computational model for structural
analysis. The backpropagation algorithm may be coarsely described with the following three steps, which
have to be applied several times in an iteration.

1. Forward computation of input signal of training sample and determination of neural network re-
sponse

2. Computation of an error between desired response and neural network response

3. Backward computation of the error and calculation of corrections to synaptic weights and biases

The initial values of the synaptic weights are obtained using random numbers. After the computation of
the neural network response to an input signal the response error is determined and used to compute
adequate changes of the synaptic weights with the aim of improving the quality of the neural network
response in the next step. By applying these corrections to the weights it is attempted to minimize the
error surface. Backpropagation is based on a standard gradient method. For the computation of the
gradient the activation function needs to be differentiable. The correction of the synaptic weights may
be expressed by the following Eq. (3) and is discussed in detail in [3, 1]. Within the backpropagation
algorithm two different modes can be applied, which are called incremental and batch.

weight learning-rate local input
. = * ; o (3)
correction parameter gradient signal

Incremental Mode The incremental mode, also known as single, on-line or sequential mode, applies
a weight correction after each presentation of one sample of training data. The training sample is
chosen randomly out of the training data, leading to a stochastic nature of the search for the minimum
of the error surface. This maximizes the probability of finding the global minimum. Furthermore, the
incremental mode is resistant against redundant training data. As the weight correction is applied after
each sample, the exact error of the specific sample is used.

Batch Mode The batch mode applies a weight correction only once after each epoch. During one
epoch every sample of the training data is presented to the neural network. The weight correction
according to each training sample needs to be stored and the weights are updated after the presentation
of the whole training data using all stored weight changes. The training samples are not chosen randomly
which assures a convergence to a (local) minimum. Further, redundant training data is disadvantageous,
because it yields longer computation time.

3.2 Numerical Comparison by Examples

For the comparison of the incremental mode and the batch mode calculations are performed under
identical conditions. That means, the size of the used network, the training and testing data as well as
the number of trained epochs are the same for the application of both modes. The training behavior
varies in dependence on the randomly selected initial values for the synaptic weights and biases and
on the training mode — incremental or batch. The evaluation of training results is performed by means
of the root mean square error e,,,; (see Eq. (4)) of the approximation. In Eq. (4) N is the number of
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training samples, d; is the desired exact output of one training sample i, and y; is the neural network
output generated from training sample i.

1 N
€rms = N ‘:l(di _yi)Z (4)

1

During a testing phase the trained neural network is shown a data set containing samples not used
during the training phase. The synaptic weights are not adjusted during this phase. The testing phase
and the computation of a testing error gives information about generalization qualities of the neural
network.

Example 1 The first example is taken from automobile industry (see Fig. 3(a)).

X, sheet thickness
strain rate

SN )
s () .
L \__/ rigid wall courtesy of Daimler Chrysler
(a) Position of chassis beam in vehicle (b) Parameters of chassis beam

Figure 3: Example 1 — chassis beam [7]

The displayed chassis beam is an important component for the crash behavior of the vehicle. With the
aid of a numerical structural analysis it is aimed at finding an appropriate design for this beam. The input
parameters x;, i = 1,...,5 which need to be adjusted in the design process are depicted in Fig. 3(b). The
response which is approximated by means of a neural network is the stonewall force affecting the rigid
wall. The development of the error, which is plotted over the number of epochs, is shown in Fig. 5(a).

Example 2 The second example deals with the planned bridge of Messina in ltaly (see Fig. 4) which
carries two railways as well as two highways.
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Figure 4: Example 2 — bridge of Messina [4, 5]

The region around the bridge is subject to seismic activity. Therefore, the bridge behavior under seismic
loads needs to be examined. The input parameters are seismic loads at 11 different points. The struc-
tural response comprises displacements at 28 points of the bridge. As an example only one of these
displacements is chosen to be approximated by means of a neural network. Training and testing results
are shown in Fig. 5(b).
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Figure 5: Comparison of the incremental mode and the batch mode

Interpretation For both examined examples it is obvious that both modes — incremental and batch —
yield a similar remaining error of the approximation of the neural network with respect to the exact re-
sponse. The incremental mode of backpropagation training, which updates the synaptic weights multiple
times during one epoch, achieves a convergence within fewer epochs than the batch mode. For this rea-
son the incremental mode needs less computation time for training and provides a better approximation
quality after few epochs.

4 Improvement of Approximation Accuracy

In many cases the quality of a response surface based on a neural network — even after a fair amount
of training epochs — still raises the desire for further improvement. Different approaches to improve
the approximation quality are, e.g., an increase of complexity of the neural network by adding more
hidden layers and / or hidden neurons and the use of more than one neural network for the response
approximation. Multiple neural networks are used by committee machines (as implemented in LS-Opt),
by section-wise approximations (e.g. using a clustering algorithm for subdividing), and by neural network
composites. Subsequently, the specific use of a neural network composite is explained and examined in
detail.

4.1 Selected Strategy

The term “composite” in connection with neural networks used in this study is associated with a perspec-
tive different from the definition given in [2]. The proposed approach is visualized in Fig. 6.

Herein, a first neural network is trained to approximate a certain response. The underlying task is very
complex. Thus the neural network response is only capable of approximating certain features of the
desired response. The idea is now to use the computed remaining error surface to train a second neural
network. The overall response is then constituted by adding the responses of both networks. For further
improvement of the response surface more neural networks may be added to approximate the remaining
errors in this manner, respectively.
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(a) Training

Figure 6: Neural network composite

4.2 Numerical Example

(b) Evaluation

The use of a neural network composite is demonstrated by means of a numerical example. The response

shown in Fig. 7(a) needs to be approximated.
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(b) Response of network 1 (c) Response of network 1 + 2

Figure 7: Responses

The response of the first trained network is plotted in Fig. 7(b). It is visible that the first neural network is
only capable of approximating the global trend of the desired response. Local features such as extreme
values are not reflected correctly. The second neural network is trained to approximate the error surface.
The sum of the responses from both networks achieves a better approximation quality by giving respect
to local features of the response (see Fig. 7(c)). The described procedure may be repeated to add
more neural networks to eliminate the remaining errors. The quality improvement by adding the second
network becomes particularly obvious in the two-dimensional plot at cross section x; =0 in Fig. 8.
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Figure 8: Comparison of responses

5 Conclusions

This study discusses two different issues of response surface approximation based on neural networks.
First, the differences between the incremental mode and the batch mode of the backpropagation algo-
rithm applied for training neural networks are investigated. For the examined examples it is found that
the incremental mode possesses advantages such as faster convergence and a less computational ef-
fort compared to the batch mode. Consequently, an application of the incremental mode is proposed in
approaches on this basis such as structural design and optimization. For example, an improvement of
the successive response surface method (see [6]) used in LS-Opt may be achieved.

The second issue is the quality improvement of the response approximation by using more than one
neural network. Different from the committee machine used by LS-Opt in this study a neural network
composite is proposed. Such a network composite applies a stepwise reduction of the approximation
error by using the error surface for network training. In the chosen example it is shown that a network
composite is able to approximate several features of the desired response with a remarkable quality.
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