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Introduction

Where do we need Fast Solvers ?

Implicite time discretization of dynamic problems like

Pu v E 1
Poet %ot T 2(1 +v)

Au+ ———V(V- u)) =f(x,t) (1)

leads to the solution of large linear systems of FE equations
Au =b inR" (2)

at each time step, where the system matrix A has the structure
A= M+ arD+ 2K (3)

with the time step 7 = At.
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Introduction

Where do we need Fast Solvers ? (cont.)

Similarly, harmonic excitations
f(x, t) = F(x) exp(iwt), ... (4)

and static or quasistatic boundary value problems also lead to
the solution of large linear systems of FE equations of the form

Au = b IinR”
with system matrices of the form (without damping)
A=K —wM (5)

and
A=K, (6)

respectively.
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Gaussian Elimination: Ax=b

ayn a2 aiz ... ain X4 b;
ax dgp dpz ... aop X2 bo
a3y dgp ds3z ... dsp X3 | =] bs
am ape apz .- Aam Xn bn
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Gaussian Elimination: Ax=b

U1 U2 Ugs Uin X Cy
o &Y g agn) X pH
0 Al ) oa) || ||l
0 d) &) .od)) \x B
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Gaussian Elimination: Ax=b

Uyt U2 Uiz ... Uip Xq C
0 U Us ... Uy Xo C
0o o0 & ... &% x5 | = | b?
0o 0 a% ... &% Xn b?
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Gaussian Elimination: Ax=b

iy U2 Uiz ... Uip X4 C1
0 Uoo Uoz ... Uop Xo Co
0 0 U ... Usp X3 — C3
0O O O ... um Xn Cn
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Gaussian Elimination: Ax=b

Gaussian Elimination = LU - Decomposition:

Uiy U2 Uiz ... Up X1 C1
0 Uoo U2z ... U2p Xo Co
0 0 U3z ... Usp X3 — C3
0 0 0 Unn Xn Cn
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Gaussian Elimination: Ax=b

Gaussian Elimination = LU - Decomposition:

Uiy U2 Uiz ... Up X1 C1
0 Uoo U2z ... U2p Xo Co
0 0 U3z ... Usp X3 — C3
0 0 0 Unn Xn Cn

Complexity Estimate:
e ops ~ BW2n=n*sn=n"7
@ Memory =~ BWn = nT n=n*s

S
|
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Sparse Direct Methods

ABCDEFGHI JKLMNOPFPQR ABCDEFGHI JKLMNOFGQRH

DO ODoOZErZC"ITMOOCD ™
DoOUVoOZErE-"IQTMOoOo®E>

Complexity Estimate:
@ Factorization: ops ~ n®/2 for d = 2 and n® for d = 3
@ Solution: ops ~ nlog(n) for d = 2 and n*/3 for d = 3
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H-Matrix Technology

oA = AA-A|<e|Al = A=cu
@ ¢ = = discretisation error — Solver !

@ ¢ =10""...1072 = Preconditioner C = LU/ !

@ Complexity ~ n up to a polylogarithmical factor !!
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Gauss’ Idea for an lteration

JFuft jebert Abend mache ich elnie neue Auflage bes Tableay, wo
immer feicht wrachjubelfen tst. Wel ber £informigfeit des
Meffungsgeschafts glot bles immer eine angenehme Wnterbal-
tung; man {lebt baran auch immer gleich, ob etiwoas Fwelfethaftes
elugelchlichen i, was noch winfchensmwert bleibt ufo, Fch emp-
feple dhnen biefen Mobus jur Rachahmung. Hchwoerlich werden
fie je migber bivecr elimintren, wenigfens nicht, mem Sie mehr
als Fwel Unbetannte haben. Das labirecte Werfabren Wafit fich
balb in Schlafe ausfifren ober mav fann mibrend desfelben an
anbere Dirge bertfert.” ’

C. F. Gauss in [2]
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Jacobi and Gauss-Seidel lterations

Our system of FE equations
Ag:Q <~ Zf:1aijuj:i7 i:17"'7n
can be written in the fixed point form as follows

o = o i i) + L f;
U = —= ( = ajuj + Z/‘:i+1 al/“]) + an‘f'

’

. K+

Jacobi: u; “a Za//uj + Z aju / 7’7
j=1 j=i+1
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Jacobi and Gauss-Seidel lterations

Our system of FE equations
Ag:Q <~ Zf:1aijuj:i7 i:17"'7n
can be written in the fixed point form as follows

o = o i i) + L f;
U = —= ( = ajuj + Z/‘:i+1 al/“]) + an‘f'

’
. P S
Gauss-Seidel: u; p Za,, Tt Z ajuf +;fi
i 1
= j=i+1
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Properties of GSI for FE Matrices like A=K

ket i
Ui (211311 Y aiy; )"’ ali

@ Slow convergence, d.h. convergence rate g = 1 — O(h?)
@ Fast smoothing of e = u — u¥ rsp. rk = AeX = b — Au¥

= Combine SMOOTHING with COARSE-GRID-CORRECTION
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Geometrical Multigrid Methods (MGM)

uf Ay = b, inR" upew
Presmoothing Postsmoothing
Residnal Correction
Restriction Prolongation
Presmoothing Postsmoothing
Residual Correction
Restriction Prolongation

Coarse Grid Solution

Result: Linear Complexity: ops = O(n;In(s~1)), M = O(n))
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Netgen/NGSolve: Von-Mises Stress in a Crank-shaft

69839 tets, p = 3, 1,105,983 dof, 34 min on 2.4 GHz PC 1.2 GB
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From Geometric to Algebraic MGM

In Practice, only the fine grid information is usually available:
@ the mesh 7, = 7; and the set w, = w; of nodes,
@ the system matrix A, = A, and the rhs b, = b,.

Then we want to construct the coarse “grid” components from
the given fine grid information:

® wj_1 = (wj)¢, Where w; is split into (w;)¢ and (wj)f on the
basis the matrix graph,

@ prolongation F’]/.;1 is definded by interpolation.
Once Pf_1 is defined, we easily get the

@ restriction Rf_1 = (l:’jf_1)T,

@ coarse grid matrix A;_ = I’lff_1Ale’f_1,

where j is runing from / to 2.
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Solvers

AMG: Crank-shaft

-7,07de-03 -3,58%-03 -1,032e-04 3,382e-03 6,868e-03

Elix Metgen 4.4

171,264 tets, p = 1, 107,625 dof, e = 1078, 34 its, 120 sec

t Solvel
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Preconditioned Conjugate Gradient (PCG) Method

’ PCG:gneW <:gold ‘

{Initialization step} Preconditioning step: w = C~'r

u <=yl .

while § > £25° do @ AMG: w=C'r=(I-E)A'r
a <= 0/(As,s) means the application of 1
U+~ u-+as V-cycle to .Aw = r with the initial
r—r+aAs guess w' = 0.
w<Clr @ C=LUisacrude (e=10"")
6 <= (w,r) H-LU-Factorization of A, i.e.
B—3/5 w solves the system LUw = r.
§—6 Result: Linear Complexity Solvers !
S—w+ps

end while
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Primal-, DP-, Dual Iterative Substructuring Methods

Primal IS — FETI-DP — FETI

*9
[ = ]

!
!

:
!

L =
L = ]
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Primal Iterative FE Substructuring Methods

Kec K u f =
(6 %) ()~ (8) @ =oeome ®

@ Schur-Complement-PCG: = PCG applied to (8) with the
Schur-Complement Preconditioner (SCPC) Cs ~ S¢

@ Inexact Solvers: = PCG applied to (7) with the PC

_(lc E¢r\ (Cc O Ic 0O
C(o /,) <o c,> (E,c /,) ()

where C; ~ K;and Ec = ECT, = stable discrete extension !
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Farhat and Roux (1991)
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inite ~ lement ' earing and 'nterconnecting — Overview

Farhat and Roux (1991)

@ Domain Decomposition
@ Conformal mesh
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inite ~ lement ' earing and 'nterconnecting — Overview

Farhat and Roux (1991)

Q
@ Domain Decomposition %

@ Conformal mesh ) ,
@ Separate d.o.f. )Pa%avaNS
Tearing
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inite ~ lement ' earing and 'nterconnecting — Overview

Farhat and Roux (1991)

@ Domain Decomposition » .
@ Conformal mesh ) 0

@ Separate d.o.f. e e

@ Continuity — Lagrange multipliers A

Interconnecting
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inite ~ lement ' earing and 'nterconnecting — Overview

Farhat and Roux (1991)

@ Domain Decomposition e ¢
@ Conformal mesh Wl

@ Separate d.o.f. T

@ Continuity — Lagrange multipliers -4

@ Elimination — dual problem
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inite ~ lement ' earing and 'nterconnecting — Overview

Farhat and Roux (1991)

Q
Domain Decomposition e
Conformal mesh Wl
Separate d.o.f. T
1

Continuity — Lagrange multipliers
Elimination — dual problem
PCG sub-space iteration
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inite  lement  earing and nterconnecting — Formulas

The unconstraint minimization problem (??) is

Q
- obviously equivalent to the constraint MP
—s
[ =) [ p 1
1.1 min (2(SC,/'VCJ’VCJ) - (QC,>Vc,i)> (10)
.- i ’

subject to Bv = 0, with v = (V¢ 1,..., Ve p)-
The constraint MP (10) is equivalent to the SPP

Sc.1 BY Uc 9.1
:T : = : <— FA=d
Bi ... B, O A 0
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inite  lement  earing and nterconnecting — Features

@ PCG iteration and preconditioning
via local Neumann and Dirichlet
solvers

@ Allows massive parallelization

@ Spectral Condition number Mandel/Tezaur, 1996
condx(C~'K) = O((1 + log(H/h))?)  Klawonn/Widlund, 2001

@ Robust w.r.t. coefficient jumps Brenner, 2002
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inite  lement @ earing and nterconnecting—NeWS

New versions:

@ Dual-Primal FETI (FETI-DP):
Farhat et al. (2000), Klawonn/Widlund/Dryja (2002),...

@ Balanced Domain Decomposition by Constraints (BDDC):
Dohrmann (2003), Mandel/Dohrmann (2003),...

@ Inexact Versions (avoid elimination !):

FETI: Klawonn/Widlund (2000)
FETI-DP: Klawonn/Rheinbach (2005)
BDDC: Dohrmann (2005)

New Applications:
@ Structural Mechanics, Contact, Helmholtz, Maxwell etc.
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Medical Source Reconstraction: Problem Describtion

Lead field basis approach to source reconstruction problems
developed by Grasedyck, Hackbusch and Wolters (MPI Leipzig):

5 layer head model
Triangulation is given, n = 147287

conductivity o : Q — R3*3 is given
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Medical Source Reconstraction: Model and Results

@ Submodel in the SRP: Neumann BVP
—div(eVu)=finQcR®and d,u=00n9Q  (11)

@ Finite Element discretisation ~~ Ax = b

@ The system has to be solved for ~ r = 400 right-hand sides
@ Stopping criterion: ||Ax — b|| < 1078||p||

@ Machine: SUNFire, 900 MHz, single processor

H-LU(e = 1079) PEBBLES

Setup 468 13

Solve 1.0 10

Total 868 4013
(Gartner/Schenk) multiple rhs optimisation

‘H-LU (Grasedyck/LeBorne/Kriemann) multiple rhs optimisation
PEBBLES (Langer/Haase/Reitzinger) multiple rhs optimisation
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@ Example 2: Magnetic Valve
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Magnetic Valve: Model and FE Model

Joint work with M. Kaltenbacher, R. Lerch, M. Schinnerl and J. Schéberl !
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LAME-NAVIER coupled with MAXWELL

@ LAME-NAVIER’s Equations + BC + IC:

®2d  od E
ga %9 _ = (A
PoEr T %o 2(1+u)< d+

1
1-2v

V(v d)) ~ (A

@ MAXWELLs Equations + BC + IC:

o— + curl

1 od
o (mcurl(A)) + T x curl(A) = S

@ Coupling terms:

e LAME: (volume) Lorentz-forces + (surface) interface forces
o MAXWELL: electromotive force + Qmag = Qmag(d)
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Implicite Time Integration of the FE Equations

Mechanical nodal FE Mesh Magnetic edge FE Mesh

1. Mechanical Predictor 2. Update-the magnetic quantities
d = dn+ Atvy +0.5AP(1 — 23)an Magnetic Solver

V=vp+ (1 —~)Atan Predictor: A= Ap, + (1 — a)AtRy
Multi-Grid-Solver:

w

5. Mechanical Solver

Multi-Grid-Solver: L*Rpi1 = Qr 4

M*ani1 = fo.q with L* = L+ aAtP _

Q ,=Qp1—PA

; * 2 n+1 n+1

Wit ?i’ _,A;, * YA;(%JF BCA~t K Corrector: Ap 1 = A+ aAtRy4q
n+1 — Int1 —Lv A X

Corrector: 4. Calculate the induction and the
dpi1 = d+ BARa,, magnetic forces

Vi1 = V4 vAtap 4
6. Convergence Test
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Simulation Results

Simulation vs Measurments Parallel Processing

02 é : m 2 2 2 30
£ [sec] [ 453 | 99 | 31 | 458
N Sp || 1.0 | 46 | 145 | 0,93
g -0.6
% 08} medsurement |

-1.0 )

. — Valve Movie

012345:6;8910 .
fime (ms) —> Cave Movie
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Summary |

e Sparse Direct Methods
e Fast Iterative Methods
e Preconditioners and Krylow-Space-lterations

e DDM as Parallelization Technology
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Summary Il

Efficient solvers are hybrid methods which exploit the best
properties of both worlds, the world of direct and itereative
methods:

@ H-matrix techniques:

e From Solver to Preconditioner:

o H-LU(e = 1078) to C=H-LU(c = 10~ )
e Algebraic Multigrid

e iterative methods as smoothers combined with
e sparse direct solvers for the systems on the coarsest grid

e Domain Decomposition Methods

e sparse direct solvers on the subdomains combined with
o iterative solvers for the interface problems
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