

Computation Products Group

3

September 28, 2005

Computation Products Group

Compiler dependency

September 28, 2005

Computation Products Group

September 28, 2005

Computation Products Group

power output does not scale linearly with voltage

$\mathbf{CISC} \rightarrow \mathbf{RISC} \ \mathbf{Decoding}$ = compatibility, RISC design =

power output (\checkmark), throughput (\checkmark), scalar (\checkmark) and vector (\checkmark)

September 28, 2005

Computation Products Group

Dual Core Memory Latency is better than the Comparable Single Core Equivalent system

September 28, 2005

Computation Products Group

Infiniband : 1250 MB/s (10Gb/s), 2500 MB/s (20Gb/s), 5000 MB/s (40Gb/s)

Graphics Card Bandwidth Trends

- AGP 8x : 2000 MB/s
- PCI Express : 6400 MB/s

Dual Core Comparison

- On Opteron, bandwidth per core is fixed regardless of # of sockets
- On competitor platforms, bandwidth per core degrades linearly

Only AMD OpteronTM Platforms provide scalable solutions to customers with enough IO to scale upon Dual Core

September 28, 2005

Computation Products Group

11

□ 4 Separate IO Channels per CPU – <u>Scalable SMP Bandwidth</u>

Architecture	1P	2P	4P
Opteron	12.8 GB/s	41.6 GB/s	115.2 GB/s
XeonEMT	6.4 GB/s	6.4 GB/s	6.4 GB/s

□ Hyptertransport[™] Interconnect – *low SMP memory latency*

Architecture	1P	2P	4P
Opteron	50 ns	75 ns	110 ns
XeonEMT	80 ns	~200 ns	> 200 ns

Commodity/High Performance SMP Solution

- presently dual core ready SRQ controller has port for 2nd core
- fewer # of chips required for MP chipsets lowering cost of SMP systems

```
September 28, 2005
```

Computation Products Group

13

September 28, 2005	
--------------------	--

Computation Products Group

IT I

20

Compiler Ecosystem

PGI, Pathscale, GNU, Absoft Intel, Microsoft and SUN

September 28, 3	2005	Cor	mputation I	Products (Group					1
ai		evel	ор							
	19 A		with	AM	D				Ar	1D
	23									
					h Table					
		C	ompile	er Trut	h Table	1				
	Vector SIMD Support					Profile Guided Feedback	Aligns Vector Loops	Parallel Debuggers	Large Array Support	Medium Memory Model
PGI	SIMD	Peels Vector	ompile Global	or Trut	h Table Links ACML	Guided	Vector		Array	Memory
PGI GNU	SIMD	Peels Vector Loops	Global IPA	Open MP	Links ACML Libraries	Guided Feedback	Vector Loops	Debuggers	Array Support	Memory Model
	SIMD Support	Peels Vector Loops	Global IPA	Open MP	Links ACML Libraries	Guided Feedback	Vector Loops	Debuggers	Array Support	Memory Model
GNU	SIMD Support	C Peels Vector Loops	Global IPA	Open MP	Links ACML Libraries	Guided Feedback	Vector Loops	Debuggers	Array Support	Memory Model
GNU Intel	SIMD Support	C Peels Vector Loops	Global IPA	Open MP	Links ACML Libraries	Guided Feedback	Vector Loops	Debuggers	Array Support	Memory Model
GNU Intel Pathscale	SIMD Support	C Peels Vector Loops V V V V V V V V V V V V V V V V V V V	Global IPA	Open MP S S S S S S S S S S S S S S S S S S	Links ACML Libraries	Guided Feedback	Vector Loops	Debuggers	Array Support	Memory Model

September 28, 2005

Computation Products Group

IT I

□ PGI 6.0-5 allows users to control process/core affinity in OMP applications when compiled with -mp=numa[,align]

EXAMPLE: HP DL585 with 4 DC Opterons (8 cores)

first set environment variables required for OMP and NUMA

```
Setenv OMP_NUM_THREADS 4
Setenv MP_BIND yes
Setenv MP_BLIST 0,2,4,6,1,3,5,7
```

run however many jobs you wish to run 1-8 way knowing they are locked to a core, do not wander and maximally utilize memory IO

Develop with AMD Tips to Doing More with Dual Controlling CPU Core/Memory Affir	
Schedule Utilities package "taskset" all dictate/change placement of processes:	
http://www.novell.com/products/linuxpackages/profess	ional/schedutils.html
 Allows user to monitor cores upon which a pro 	cess is run
taskset -p <process id=""></process>	
Change the cores currently processing < PROC	ESS ID>
taskset -cp 0,2 <process id=""></process>	
Run an executable upon nodes 0 and 2	
taskset -c 0,2 test.exe	
September 28, 2005 Computation Products Group	25
Develop	
Develop with AMD	
with AMD Tips to Doing More with Dual	
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon	OpenMP and MPI
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon	OpenMP and MPI D systems
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du	OpenMP and MPI D systems al core
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for dual	OpenMP and MPI D systems al core cores
 with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du to OS dual core is just doubling the # of "real" upon AMD dual-core technology in MCAE: +8 	OpenMP and MPI D systems al core cores
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du to OS dual core is just doubling the # of "real" upon AMD dual-core technology in MCAE: +8 Utilize HP-MPI	OpenMP and MPI D systems al core cores 00% scaling
 with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du to OS dual core is just doubling the # of "real" upon AMD dual-core technology in MCAE: +8 	OpenMP and MPI D systems al core cores 00% scaling
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du to OS dual core is just doubling the # of "real" upon AMD dual-core technology in MCAE: +8 Utilize HP-MPI Allows user to specify core and memory affinit	OpenMP and MPI D systems al core cores 00% scaling
With AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM • no software investment required to tune for du • to OS dual core is just doubling the # of "real" • upon AMD dual-core technology in MCAE: +8 • Utilize HP-MPI • Allows user to specify core and memory affinit	OpenMP and MPI D systems al core cores 00% scaling
With AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM • no software investment required to tune for du • to OS dual core is just doubling the # of "real" • upon AMD dual-core technology in MCAE: +8 • Utilize HP-MPI • Allows user to specify core and memory affinit	OpenMP and MPI D systems al core cores 00% scaling
with AMD Tips to Doing More with Dual Dual Core scales seamlessly upon Utilize OMP and MPI upon Dual-core AM no software investment required to tune for du to OS dual core is just doubling the # of "real" upon AMD dual-core technology in MCAE: +8 Utilize HP-MPI Allows user to specify core and memory affinit	OpenMP and MPI D systems al core cores 00% scaling

© 2005 Copyright by DYNA*more* GmbH

Computation Products Group

September 28, 2005

MSC MARC Performance Relative to Itanium 2

Trademark Attribution

AMD, the AMD Arrow Logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.

Computation Products Group