

Influences of LS-DYNA-results by coupling with injection molding simulation

Tobias Schäfer SimpaTec

Milestones

- _ Founded 2004 in Aachen
- _ Partner of Moldex3D
 - _ in Germany, Switzerland, Austria, BeNeLux, France, GB, Iran, Romania, Tunisia, Algeria, Marocco and Canada

accuform

- _ SimpaTec GmbH in Aachen, Offices in Reutlingen and Weimar
- SimpaTec SARL France, office in Guebwiller
- _ SimpaTec Asia, office in Bangkok, Thailand
- _ Since 2007 Reseller of Beaumont Technologies Inc.
- Since 2011 Reseller of accuform, CZ

- Since 2017 SimpaTec GmbH Austria office in Linz
- Since 2017 Partnership with CT CoreTechnologie GmbH, Germany
- Since 2017 Partnership with MSC Software Corporation / e-Xstream engineering SA Planned in 2018 SimpaTec US, office in Greenville (SC)

Scope of work

Service according to the requirements of the customer

- Enginneering services (Injection moulding and FEM)
- _ Professional partner for the plastic industry
- _ Long time experience in simulation as well as in plastic processing
- Product and process optimization
- _ Costumer related training options (software and/or technology)
- _ Support and consulting on site
- _ RD (Software development)

Commitment

- _ Activities in public funded RD projects (e.g. lightweight)
- _ Close relationship with universities
- _ Seminars, conferences, workshops
- Creation of networks

Software

- Moldex3D _ The software solution for the design and optimization of the plastic injection molding process
- **T-SIM** _ T-SIM simulates the complex manufacturing process of thermoforming.
 - B-SIM is a software package to simulate blow molding.

B-SIM

Optimization of the component behavior using runner modification

The software solution for fast, automatic data conversion and processing for CAD systems

CDigimat

Multi-scale material modeling technology for plastic & composite materials and structures.

Simulating Reality, interbranch CAE Solutions

Outline

Introduction

- Overview of manufacturing processes
- Influences of manufacturing process
 - _ Short/long fibers
 - _ Fiber concentration and fiber length
 - _ Residual stresses
 - _ Weld lines
 - _ Fiber orientation tensor about thickness

Challenges of coupling manufacturing data with FEA

- _ Material modeling
- _ Material models
- _ Indicators
- _ Reverse Engineering
- _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

Outline

Introduction

- Overview of manufacturing processes
- Influences of manufacturing process
 - Short/long fibers
 - _ Fiber concentration and fiber length
 - _ Residual stresses
 - _ Weld lines
 - _ Fiber orientation tensor about thickness
 - Challenges of coupling manufacturing data with FEA
 - _ Material modelling
 - _ Material models
 - _ Indicators
 - _ Reverse Engineering
 - _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

7

Overview of manufacturing processes

Injection molding

Injection compression molding

Draping process

Additive manufacturing

Outline

Introduction

Overview of manufacturing processes

Influences of manufacturing process

- _ Short/long fibers
- _ Fiber concentration and fiber length
- _ Residual stresses
- _ Weld lines
- _ Fiber orientation tensor about thickness
- Challenges of coupling manufacturing data with FEA
 - _ Material modeling
 - _ Material models
 - _ Indicators
 - _ Reverse Engineering
 - _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

Influences of manufacturing process

Short or long fiber reinforced plastics:

- Carbon
- _ Glass
- _ Nature

Fiber concentration / fiber breakage

Fiber orientation tensor about thickness

Residual stresses

Short fiber [1]

Long fiber [1]

Fiber breakage [2]

Fiber breakage in screw [2]

Influences of manufacturing process

Short fiber

High orientation intensity

Orientation intensity SF [2]

Fiber reinforced plastics [2]

Long fiber

Low orientation intensity, low anisotropic

Low shrinkage rate

Influences of manufacturing process

Fiber concentration

Concentration corresponds to the fiber orientation and melt viscosity

Fiber concentration [2]

Fiber orientation tensor [2]

Influences of manufacturing process

Fiber length – breakage prediction during screw-processing

- The melt went through the screw melting and injecting process, high shear forces can easily snap the fibers
- Apparent fiber length degradation, less than 1/5 the original length can be easily found in the finished part

Influences of manufacturing process

- Porosity of foams
 - Cell density
 - Cell concentration

Porosity and fiber Source: [5]

Influences of manufacturing process

- Residual stresses
- _ Flow induced residual stress
- Thermal induced residual stress

Thermal induced residual stress

SIMPATEC

Influences of manufacturing process

Weld lines

Fiber reinforced material; melt fronts approach [3]

Weld Line

ine

[3]

Weld line formation in fiber-reinforced material [3]

Influences of manufacturing process

Influences of manufacturing process

Fiber orientation through thickness

- Flow directional orientation, a11
- Cross-flow directional orientation, a22
- _ Out-of-plan directional orientation, a33

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Structure analysis: Deformation

Orientation determines the fiber induces anisotropic mechanical properties

Anisotropic (With Fiber Orientation) [2]

Influences of manufacturing process

Structure of thickness
Consist different layer
Skin
Core
Flow direction
[2]

Core / skin effect depends on shear rates, temperatures, flow behavior

Different Layers through thickness [1]

Outline

Introduction

- Overview of manufacturing processes
- Influences of manufacturing process
 - _ Short/long fibers
 - _ Fiber concentration and fiber length
 - Residual stresses
 - _ Weld lines
 - _ Fiber orientation tensor about thickness

Challenges of coupling manufacturing data with FEA

- _ Material modeling
- _ Material models
- _ Indicators
- _ Reverse Engineering
- _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

Challenge of coupling manufacturing data with FEA

SIMPATED

Challenges of materials [2]

Challenge of coupling manufacturing **SivipATEC** data with FEA

- _ Anisotropy / Orthotropy
- _ Non-linearity
- _ Rate dependency
- _ Temperature dependency
- Complex failure mechanismus
 - Fiber breakage
 - Fiber-matrix debonding
 - Fiber-buckling

[1]

Materialmodelling

Prediction of material behavior with mean-field homogenisation

Material modeling

Available material models in Digimat

Strain-rate independent:

- (Thermo-) elastic
- _ (Thermo-) elastoplatic
- _ (Thermo-) elastoplastic with damage

Strain-rate dependent

- _ (Thermo-) viscoplastic
- _ (Thermo-) elastoviscoplastic
- Viscoelastic-viscoplastic

Material modeling

- Define criteria for indicators
- Weld line indicator
 - _ Knockdown-factor
 - Criteria for each phase of microstructure

Stiffness reduction

- _ With damage
- _ With deleting elements

Failure indicator

Weld line elements

Element deletion

Material modeling: Reverse Engineering

SIMPATED

Calibrate the Digimat material with experimental curves

- Automatic
- Interactiv
- Calibrate three curves in 0°/45°/90° of fiber orientation:
 - Trend of curves
 - Anisotrope properties of the microstructure
 - Failure

Material modeling

Mapping of different data (Prediction / CT-Scan)

Outline

Introduction

- Overview of manufacturing processes
- Influences of manufacturing process
 - _ Short/long fibers
 - _ Fiber concentration and fiber length
 - _ Residual stresses
 - _ Weld lines
 - Fiber orientation tensor about thickness
- Challenges of coupling manufacturing data with FEA
 - _ Material modeling
 - _ Material models
 - _ Indicators
 - _ Reverse Engineering
 - _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

Digimat: From manufacturing process **SIMPATED** to performance

Standard approach: Manufacturing process and FEA uncoupled

Digimat approach: Manufacturing process and FEA coupled

Coupling of manufacturing data, material **SIMPATED** modeling and structural analysis

_ Injection molding

- Injection compression molding
- Foam injection molding

Material Modeling

- Fiber orientation
- _ Fiber shape
- _ Fiber weight
- _ Fiber length
- Porosity
- Orientation of toolpath

Structural Analysis

- Static
- Crash

. . .

- Fatique
- Noise Vibration
 - Harshness (NVH)

[1]

Outline

Introduction

- Overview of manufacturing processes
- Influences of manufacturing process
 - _ Short/long fibers
 - _ Fiber concentration and fiber length
 - _ Residual stresses
 - _ Weld lines
 - _ Fiber orientation tensor about thickness

Challenges of coupling manufacturing data with FEA

- _ Material modeling
- _ Material models
- _ Indicators
- _ Reverse Engineering
- _ Mapping of data

Coupling of manufacturing processes, material modeling and structural analysis

Conclusion: Case study

SIMPATED

faurecia

SOLVAY

Challenge:

_ Metal Replacement by TECHNYL®

_ Reference Seat

_ All steel

Cushion length adjustment and powered tilt function

_ 2,750 g

_ Multifunctional Seat Pan

_ Injected PA6/GF30

Same functionality

SIMPATED

faurecia

Injection Molded Part

Fiber orientation from injection molding process

Simulation Strategy

Complete front crash test and simulation (65 km/h)

- _ Tests performed at Faurecia facilities
- _ LS-Dyna explicit analyses at Solvay

_ Investigation of a simple sub-system

_ Tests and simulation performed at Solvay application development laboratory

SIMPATED

faurecia

SIMPATED

faurecia

Failure Correlation

- Focus on 3 significant events
 - _ Rib buckling
 - _ Rib failure
 - Failure evolution

Failure Correlation

After 10 ms: rib buckling

SIMPATED

faurecia

In ISO 527 sample, stress and fibre direction are aligned. Material is seen as having a brittle behaviour.

In the part, fiber and stress are not aligned. Thus, the material is more ductile than expected with a standard ISO 527 based material model.

No failure occurs yet.

Failure Correlation

SIMPATED

faurecia

In top of rib, fibre orientation and stress direction are aligned as in an ISO 527 sample, this is why failure occurs at same time in standard and MMI.

SIMPATED

faurecia

SOLVAY

Failure goes in wrong direction.

Failure stops. Wrong prediction. Failure continues following rib base, Good prediction.

Sources:

- [1] e-Xstream; Digimat Training documents 2018.0;
- [2] CoreTech System Co.,Ltd; Moldex3D: Fiber R16
- [3] Weld line: http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/trouble/ weldmeld/f6000001.htm
- [4] e-Xstream; Case study: Faurecia seat (Faurecia/Solvay)
- [5] http://www.genesisllc.com/gpe/images/mucell_glass.gif

Questions? Don't hesitate to contact us:

SIMPATED

Tobias Schäfer Project Engineer

> SimpaTec GmbH Wurmbenden 15 52070 Aachen, Germany Telephone: +49 241 – 56 52 76 11 t.schaefer@simpatec.com

SimpaTec GmbH

Wurmbenden 15 52070 Aachen, Germany Telephone: +49 241 – 56 52 76 0 Email: info@simpatec.com www.simpatec.com