
10th European LS-DYNA Conference 2015, Würzburg, Germany 

 

 

 
© 2015 Copyright by DYNAmore GmbH 

Edge-to-edge Cohesive Shell Elements in LS-DYNA 

Jesper Karlsson1, Martin Fagerström2 

1Dynamore Nordic AB 
2Chalmers University of Technology 

1 Introduction 

Cohesive elements are an important tool for simulating the propagation of cracks in materials. For 
example, to describe failure propagation in a thin walled sheet metal structure along an a priori known 
crack path, e.g. along a weld line, through-the-thickness crack propagation has in the literature been 
modeled by embedding interface cohesive zone elements in between shells elements, see e.g. 
References [2,3,4,7,8].  
 
By connecting faces and edges of neighboring elements, the cohesive elements are used to describe 
the degrading load carrying capacity of the material in the evolving fracture process zone. The 
elements do not, however, model a physical material in a continuum mechanics sense; instead they 
model a (non-linear dissipative) spring based force response depending on the separation of the 
neighboring faces and edges through a cohesive law. Hence, they can remain stable under zero or 
negative volume. 
 
LS-DYNA has a variety of solid cohesive elements to simulate cracks between solids (element type 19 
and 21) and delamination of shells (type 20 and 22). Elements 19 and 20 are hexahedral elements 
and 21 and 22 are corresponding wedge/pentahedral elements. While elements 19 and 21 use a total 
formulation where the separation between layers is calculated directly from the interpolation of nodal 
coordinates, elements 20 and 22 require the use of an incremental formulation to account for 
objectivity issues related to the rotational degrees of freedoms in shells. As of Revision 8.0 a new 
cohesive shell element is now available for edge-to-edge connection of quadrilateral thin shells, based 
on the same principles of incrementation as in cohesive elements 20 and 22. The new cohesive 
element (type 29) accounts for in-plane and out-of-plane separation as well as hinge bending and 
works with existing cohesive material models. 
 

2 Usage 

The new shell element 29 is available as ELFORM=29 on the *SECTION_SHELL card. It supports all 

cohesive materials that are available for solid cohesive elements, and supports both SMP, MPP, as 
well as implicit dynamics. To support hinge bending, four integration points are always used, and the 
option NIP on *SECTION_SHELL is thus not supported.  

 
Since in-plane rotation of neighboring shells will not induce translational velocities in the integration 
points of the cohesive layer, a stabilization scheme is applied, so called drilling rotation constraints. 

This artificial stabilization can be adjusted by the DRCPM parameter on the *CONTROL_SHELL or 

*CONTROL_IMPLICIT_SOLVER cards. 

 

3 Theory 

Cohesive shell element 29 connects the edges of two thin shells via a cohesive law. Figure 1 shows a 
schematic of the cohesive shell and its neighboring elements. The cohesive element is here defined 
by the vertices 𝑚4, 𝑚3, 𝑛2, 𝑛1, with local coordinate system (𝒒1, 𝒒2, 𝒒3), and all elements are assumed 

to be of equal thickness 𝑡. Perpendicular to the cohesive shell, located in between the top and bottom 

elements in the (𝒒1, 𝒒2)-plane, is the cohesive layer. In this layer the separation distance between the 
adjacent surfaces of the (in thickness direction extruded) top and bottom elements is calculated. To 
account for bending, the separation distance is here computed in four integration points in the 
cohesive layer, giving rise to forces and moments in the cohesive element vertices through a cohesive 
law. 
 
In the following subsections the connection between the separation distance and the resulting nodal 
forces is explained in detail. 
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Fig.1: Schematics of cohesive element (nodes  𝑚4, 𝑚3, 𝑛2, 𝑛1) and neighboring shell elements. 

3.1 Kinematics 

The separation distance in the cohesive layer is defined by 

𝒅 = 𝑸𝑻(𝒙𝒕 − 𝒙𝒃) − 𝒅𝟎, (1) 

where 

𝑸 = [𝒒𝟏 𝒒𝟐 𝒒𝟑], (2) 
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(3) 

are global coordinates on the top and bottom surfaces of the extruded shells for a given iso-parametric 
coordinate (𝜉, 𝜂) ∈ [−1,1] × [−1,1]. The neighboring top and bottom shell normals are denoted 𝒏𝑡 and 

𝒏𝑏, respectively, and the distance vector 𝒅0 represents the initial gap for cases where the cohesive 
interface has a nonzero thickness, so initially 𝒅 = 𝟎. Also, the thickness of the neighboring shells 

assumed to be constant and equal to 𝑡. 
 
From here and onwards, superscripts n and m denote the top and bottom surfaces, respectively, and 
thus 𝒙𝑖

𝑛 and 𝒙𝑖
𝑚 are the nodal coordinates associated with the two surfaces.  

 
For cohesive element 29, the separation 𝒅 is updated using an incremental formulation 

�̇� = 𝑸𝑇(�̇�𝑡 − �̇�𝑏) + �̇�𝑇(𝒙𝒕 − 𝒙𝒃), (4) 

where 
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(5) 

In these equations, 𝝎𝑖
𝑚  and 𝝎𝑖

𝑛 denote nodal rotational velocities. Note that for evaluation the 

velocities of 𝒙𝑡 and 𝒙𝑏 it is assumed that the fibers pointing from the assumed mid layers of the 

neighboring shells coincides with the corresponding shell normals 𝒏𝑡 and 𝒏𝑏. This is in analogy to how 
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the Belytschko-Tsay element is treating the fiber vectors and presumably enhances robustness of the 
elements.  
 
The local coordinate system is computed by 

𝒒2 =
𝒙2

𝑛 + 𝒙3
𝑚 − 𝒙1

𝑛 − 𝒙4
𝑚

|𝒙2
𝑛 + 𝒙3

𝑚 − 𝒙1
𝑛 − 𝒙4

𝑚|
, (6) 

followed by 

𝒒 = 𝒙4
𝑛 + 𝒙3

𝑛 − 𝒙1
𝑚 − 𝒙2

𝑚, (7) 

𝒒3 =
𝒒 − 𝒒2𝒒𝑇𝒒2

|𝒒 − 𝒒2𝒒𝑇𝒒2|
, (8) 

and 

𝒒1 = 𝒒2 × 𝒒3. (9) 

3.2 Constitutive law 

The cohesive constitutive law determines the normal and shear stress, expressed here as the traction 
vector 𝒕 as a function of the separation vector 𝒅, i.e. 𝒕 = 𝒕(𝒅, … ). The components of the traction 

vector correspond to the projection of stress onto the mid layer normal 𝒒3 and the tangential plane 
(𝒒1, 𝒒2). Typical appearance of each component of this vector is illustrated in Figure 2, where the 

cohesive interface behaves elastically up to a critical separation distance 𝑑𝑒 and peak stress 𝑡𝑒 after 
which damage commences. The interface is damaged and failure occurs at a certain critical 
separation distance 𝑑𝑐, the unloading is typically elastic with the secant modulus as indicated by the 
dashed arrow. 
 

 

Fig.2: Common stress versus separation for a cohesive interface 

3.3 Nodal forces 

The principle of virtual work states that (sum over i) 
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where 𝒇𝑖
𝑗
 and 𝒓𝑖

𝑗
 is the nodal force and moment for node i on element j, respectively. The area A 

represents the cohesive mid layer spanned by the iso-parametric representation and this is used to 
identify the nodal forces and moments.  
 
From Equation (4) the left hand side of (10) can also be expressed as 

∫ �̇�𝑇𝝈𝑑𝐴

𝐴
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Before continuing, rewrite (5) as 
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(12) 

where 𝑹∗ is the linear operator defined by 

𝑹∗𝝎 = 𝒏∗ × 𝝎. (13) 

Inserting (12) into the right of (11) gives after some simplifications 
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(14) 

If the first term on the right hand side of (14) is neglected we can, using (10) and (14), identify the 
nonzero nodal forces and moments 
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(16) 

In the implementation these integrals are evaluated using 4-point Gaussian quadrature, where the 
integration point locations are given by 
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,

1
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(17) 

Thus an integral is evaluated as 

∫ 𝜙(𝜉, 𝜂)𝛔𝑑𝐴

𝐴

≈ ∑ 𝜙(𝜉𝑖 , 𝜂𝑖)𝛔𝑖𝐴𝑖

4

𝑖=1

, (18) 

where 𝜙 is an arbitrary function of the iso-parametric coordinates, 𝐴𝑖 in the right hand side stands for 
the area of the cohesive layer and 𝛔𝑖 is the cohesive interface stress, both evaluated at and with 
respect to integration point i. 

3.4 Drilling constraint 

From (5) and Figure 1, it is evident that rotational velocities with respect to the adjacent shell normals 
will not induce translational velocities in the integration points, so a stabilization scheme is applied. To 
this end, introduce the generalized drilling strains δ𝑖

𝑛 and δ𝑗
𝑚, 𝑖 = 1,2,  𝑗 = 3,4. These are distances that 

are incremented by their respective velocities 

�̇�𝑖
𝑛 = 𝒏𝑡

𝑇{𝝎𝑖
𝑛𝑑21 − 𝑹21(�̇�2

𝑛 − �̇�1
𝑛)},            𝑖 = 1,2, 

�̇�𝑗
𝑚 = 𝒏𝑏

𝑇{𝝎𝑗
𝑚𝑑34 − 𝑹34(�̇�3

𝑚 − �̇�4
𝑚)}, 𝑗 = 3,4, 

(19) 

where 

𝑑21 = |𝒙2
𝑛 − 𝒙1

𝑛|, 

𝑑34 = |𝒙3
𝑚 − 𝒙4

𝑚|, 
(20) 

and for an arbitrary vector 𝐯, 

𝑹21𝒗 =
1

𝑑21

(𝒙2
𝑛 − 𝒙1

𝑛) × 𝒗, 

𝑹34𝒗 =
1

𝑑34

(𝒙3
𝑚 − 𝒙4

𝑚) × 𝒗. 

(21) 

A characteristic material stiffness 𝐸, typically a fraction of the elastic stiffness of the underlying 
cohesive material, is used to set up the drilling stress 

𝜍𝑖
𝑛 = 𝐸𝛿𝑖

𝑛,       𝑖 = 1,2, 

𝜍𝑗
𝑚 = 𝐸𝛿𝑗

𝑚,       𝑗 = 3,4, 
(22) 

and the stabilization nodal forces and moments are evaluated as 

𝐟1
𝑛 = 𝐴(𝜍1

𝑛+𝜍2
𝑛)𝐑21

𝑇 𝐧𝑡, 𝐟2
𝑛 = −𝐟1

𝑛, 𝐟3
𝑚 = −𝐟4

𝑚, 𝐟4
𝑚 = 𝐴(𝜍3

𝑚+𝜍4
𝑚)𝐑34

𝑇 𝐧𝑏, (23) 

and 

𝐫1
𝑛 = 𝐴𝜍1

𝑛𝑑21𝐧𝑡, 𝐫2
𝑛 = 𝐴𝜍2

𝑛𝑑21𝐧𝑡, 𝐫3
𝑚 = 𝐴𝜍3

𝑚𝑑34𝐧𝑏 , 𝐫4
𝑚 = 𝐴𝜍4

𝑚𝑑34𝐧𝑏 , (24) 

 
which are added to the structural counterparts in previous section. 
 
 

4 Numerical Examples 

Two different examples are here presented to verify the accuracy and robustness of shell element 29. 



10th European LS-DYNA Conference 2015, Würzburg, Germany 

 

 

 
© 2015 Copyright by DYNAmore GmbH 

4.1 Separation of single layer 

In this example the cohesive shell 29 is compared with the existing cohesive solid element 20. To do a 
fair comparison, each neighbor of the cohesive element consist of stacked elements: two bricks 
(thickness 0.05) with a thin shell layer (thickness 1E-6) in-between. The stacked elements are joined 
in thickness direction by nodal rigid bodies, and thus each stack act as a single brick of thickness 
0.100001. The stacks can be joined by either a cohesive solid or a cohesive shell with thickness equal 
to the stacks, i.e. 0.100001. All elements in the stack share the same material data, in this case 
*MAT_ELASTIC with RO=1E-3, E=1E5, PR=0.3. The cohesive elements use 

*MAT_COHESIVE_ELASTIC with EN=ET=1E5. The simple bending test, in Figure 3, shows good 

agreement between solid and shell cohesive elements. In Figure 4, a similar test with simultaneous 
bending and pulling can be seen.  

 

Fig.3: Comparison between cohesive solid 20 and cohesive shell 29 for simple bending. Here, the 
prescribed boundary motion is zero after t=0.85. 

ELFORM 20 ELFORM 29 
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Fig.4: Comparison between cohesive solid 20 and cohesive shell 29 for bending and pulling. 

 

4.2 Notch in clamped plate 

This example was treated experimentally in [1], and most recently in [5,6], where it was analyzed 
using extended finite element methods (XFEM). It deals with a pre-notched clamped plate with length 
and width 203 mm and thickness 0.8 mm. The initial crack is 40 mm deep and a transverse 
displacement of 20 m/s is applied to the outer corners of the crack. A line of cohesive shells is place in 
the middle of the plate in line with the initial crack. The material is here the rate independent part of 
*MAT_SIMPLIFIED_JOHNSON_COOK and the cohesive material is given by the simple bi-linear elastic 

model in *MAT_COHESIVE_MIXED_MODE, see material data in Figure 5. 

 

 

Fig.5: LS-DYNA input cards in unit system mm/ms/kg/kN 

 
In Figure 6, the mesh and deformed plate is visualized at final time, and in Figure 6 a comparison is 
made with experimental data from [1] and the XFEM result from [5]. The cohesive element approach 
show good agreement with both data and XFEM. 

ELFORM 29 ELFORM 20 

*MAT_SIMPLIFIED_JOHNSON_COOK 
$#     mid        ro         e        pr        vp   
         1   7.85E-6     210.0       0.3       0.0 
$#       a         b         n         c 
     0.175     0.767    0.6722       0.0 

*MAT_COHESIVE_MIXED_MODE 
$#     mid        ro     roflg   intfail        en        et       gic      giic 
         2   7.85E-6       1.0       4.0     210.0     210.0      0.25      0.25 
$#     xmu         t         s       und       utd 
       1.0     0.306     0.306     1.634     1.634 
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Fig.6: Deformed plate.The initial 40 mm crack cuts through the red area where no cohesive elements 
are present. Note that three cohesive elements has eroded in the blue area. 

 

Fig.7: Comparison with the experimental data from [1] and the XFEM result from [5]. The plot shows 
the sum of the transversal force response on the displaced boundary nodes. 

 

5 Conclusion 

As of Revision 8.0 a new cohesive shell element is available for edge-to-edge connection of 
quadrilateral thin shells. The new cohesive element (type 29) accounts for in-plane and out-of-plane 
separation as well as hinge bending and works with existing cohesive material models. It shows good 
agreement with existing solid cohesive elements (type 19 and 20), as well as with experimental data 
and the XFEM method for the example of crack propagation in a pre-notched clamped plate. 
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