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1 Introduction 

 
An electromagnetism module has being developed in LS-DYNA for coupled 
mechanical/thermal/electromagnetic simulations. More recently, a new 2D axi-symmetric version of 
this solver was introduced, allowing much faster simulations. 
In this solver, the EM equations are solved in a 2D plane, and the 2D EM fields, Lorentz force and 
Joule heating are then expanded to 3D elements by rotations around the axis. This allows to couple 
the 2D EM with 3D mechanics and thermal, thus keeping all the LS-DYNA 3D capabilities available. 
The user needs to provide a 3D mesh with rotational symmetry, either on the full 360 degrees or a 
small slice.      
 The 2D-EM eddy-current problems are solved using a coupled FEM-BEM method, both based on 
differential forms. It can be coupled to different external circuits, including imposed currents, imposed 
voltage or (R,L,C) circuits. It also allows the coupling of different parts in a single circuit in order to 
have complex geometries like, e.g., spiral coils. It works both in serial and MPP, and is available for 
the eddy-current solver, soon to be extended to the induced heating and resistive heating ones. A 
contact capability has also been introduced. 
The solver will be introduced, followed by presentations of 2D/3D benchmarks and real life examples. 

2 Presentation of the solver 

2.1 Presentation of the EM-3D solver 

The following is a brief reminder of what was presented in details in [1] and [2].  
We will present the “eddy-current” part of the EM solvers since the inductive heating solver consists of 
iterations of the eddy-current one over a few periods of the source current, and the resistive solver is a 
simplified version of the eddy-current solver. 
In order to solve the Maxwell equations in the “eddy-current” or “diffusion-induction” approximation 
(where the propagation of the EM waves in the air or vacuum is considered as infinitely fast), we 

introduce a scalar potential 𝜑 and a vector potential A


 such that the magnetic B


 and electric E


 fields 
can be written respectively as: 
 
 �⃗� = ∇⃗⃗ × 𝐴  (1) 

 
And 
 

�⃗� = −∇⃗⃗ 𝜑 −
𝜕𝐴 

𝜕𝑡
 

(2) 

 

When choosing an appropriate Gauge condition on A


, the Maxwell equations in the eddy current 
approximations can then write: 
 ∇. σ∇⃗⃗ 𝜑 = 0 (3) 

 
And 
 
 

𝜎
𝜕𝐴 

𝜕𝑡
+ ∇⃗⃗ ×

1

𝜇
∇⃗⃗ × 𝐴 + 𝜎∇⃗⃗ 𝜑 = 𝑗 𝑠 

(4) 

 
 
Where 𝜎 is the electrical conductivity, 𝜇 the permeability and 

Sj


 a source current. 

We then use nedelec type basis functions which are particularly well suited for differential geometry 
and allow precise representations of the exterior derivatives, gradient, curl and divergence. 
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Equations (3) and (4) projected over the basis functions read: 
 

∫ 𝜎∇⃗⃗ 𝜑. ∇⃗⃗ 𝑊0𝑑Ω
Ω

= 0 
(5) 

 
And 
 ∫ 𝜎

𝜕𝐴 

𝜕𝑡
. �⃗⃗⃗� 1𝑑Ω + ∫

1

𝜇
∇⃗⃗ × 𝐴 . ∇⃗⃗ × �⃗⃗⃗� 1

Ω
𝑑Ω

Ω
=  

−∫ 𝜎∇⃗⃗ 𝜑. �⃗⃗⃗� 1𝑑Ω+ ∫
1

𝜇
[�⃗� × (∇⃗⃗ × 𝐴 )]

Γ

. �⃗⃗⃗� 1𝑑Γ
Ω

 

(6) 

 
Where 0W  are the so called “0-form“ basis functions, scalar functions associated with the nodes of the 

mesh and 1W


 the 1-form, vector functions associated with the edges. 

The last term in Equation (6) is computed using a BEM method. This allows to forget about meshing 
the air or vacuum surrounding the conductors which is very important when dealing with very small 
and intricate inter-conductor gaps, as well as moving conductors. 

The BEM method requires the introduction of an extra variable k


, called the surface current which 

does not represent a physical field, but which is such that it creates the same magnetic field and 
vector potential outside of the conductors as the actual current density flowing through the conductors. 
Using the BEM method thus also allows to have an extra handle on the current flowing through the 
conductors and to impose constraints such as having a given total current vs time in a given 
conductor, or having a current flowing through one conductor equal to the one flowing through another 
one.  

In this FEM-BEM method, k


 and A


 are coupled by the following equations: 

 
𝐴 (𝑥 ) =

𝜇0

4𝜋
∫

1

|𝑥 − 𝑦 |
�⃗� 

Γ

(𝑦 )𝑑𝑦 
(7) 

 
And 
 [�⃗� × (∇⃗⃗ × 𝐴 )](𝑥 ) =

𝜇0

2
�⃗� (𝑥 )

−
𝜇0

4𝜋
∫

1

|𝑥 − 𝑦 |3
�⃗� 

Γ

× [(𝑥 − 𝑦 ) × �⃗� (𝑦 )]𝑑𝑦 

 

(8) 

 
Where this last equation allows to get the last term of (6). 
In these 2 last equations, we can see the 2 kernels that we have to deal with are: 
 

𝐺3𝑑
0 (𝑥 , 𝑥 ′) =

1

|𝑥 − 𝑥 ′|
 

(9) 

 
𝐺3𝑑

1 (𝑥 , 𝑥 ′) = ∇⃗⃗ 𝑥
1

|𝑥 − 𝑥 ′|
= −

𝑥 − 𝑥 ′

|𝑥 − 𝑥 ′
3
|
 

 

(10) 

 
We mention these kernels because they will represent the main difference between the 3D and 2D 
solvers. 

2.2 The EM 2D solver 

2.2.1 EM fields in 2D axisymmetric - toroidal and poloidal vectors 

 
We now introduce a cylindrical system of coordinates (r,θ,z) and consider that we have some axi-
symmetric conditions, i.e. that the fields depend only on r and z. We also suppose that the vector 
potential is purely azimuthal: 
 

𝐴 (𝑟 ) = 𝐴(𝑟, 𝑧)𝑒𝜃⃗⃗⃗⃗  
(11) 
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Since A


 is homogeneous to 


 (see Equation (2)), we must also have 


 azimuthal and 

(axisymmetric). We thus have : 
 

𝜙(𝑟, 𝜃, 𝑧) = 𝜙(𝜃) 
(12) 

 
And  
 

∇⃗⃗ Φ =
1

𝑟

𝜕𝜙

𝛿𝜃
𝑒𝜃⃗⃗⃗⃗  

(13) 

 

Were 
𝜕Φ

𝛿𝜃
 cannot depend on θ due to the axisymmetry, so it must be a constant, which value we can 

relate to the voltage U applied at the ends of a loop in θ by 
𝜕Φ

𝜕𝜃
=

𝑈

2𝜋
 , so that Φ(0) = 0 and Φ(2𝜋) = 𝑈. 

We thus have: 
 

∇⃗⃗ Φ =
𝑈

2𝜋𝑟
𝑒𝜃⃗⃗⃗⃗  

(14) 

 
The other fields read: 
 

�⃗� (𝑟 ) = 𝐵𝑟(𝑟, 𝑧)𝑒𝑟⃗⃗  ⃗ + 𝐵𝑧(𝑟, 𝑧)𝑒𝑧⃗⃗  ⃗ 

 

(15) 

 
�⃗� (𝑟 ) = 𝐸𝜃(𝑟, 𝑧)𝑒𝜃⃗⃗⃗⃗  

 

(16) 

 
𝑗 (𝑟 ) = 𝑗𝜃(𝑟, 𝑧)𝑒𝜃⃗⃗⃗⃗  

(17) 

 

The vectors parallel to 𝑒𝜃⃗⃗⃗⃗  are called toroidal or azimuthal, whereas these lying in the (𝑒𝑟⃗⃗  ⃗, 𝑒𝑧⃗⃗  ⃗} plane are 
called poloidal. 

2.2.2 FEM in 2D  

The EM 2D mesh is defined by a set of faces (the elements) with their nodal connectivities. The 
azimuthal vectors are represented by 0-form basis functions 0W  which are associated with the nodes 

of the mesh. The poloidal vectors are represented by 1-form basis functions 1W


 associated with the 

edges of the mesh. The computation of the 2D FEM matrices is very similar to the ones of the 3D FEM 
matrices, where the integration now takes place over faces instead of 3D elements.  
 

2.2.3 BEM in 2D 

 
The BEM matrices are very different though, due to an explicit iteration over θ which changes the 
kernels. 
For example, if we take Equation (7), write it in cylindrical coordinates and take into account the 
axisymmetry : 
 

𝐴 (𝑟, 𝑧)

= ∭𝑟′𝑑𝑟′𝑑𝑧′𝑑𝜃′
𝑘(𝑟′, 𝑧′)𝑒𝜃′⃗⃗ ⃗⃗  ⃗

|𝑥(𝑟, 𝜃, 𝑧) − 𝑥′(𝑟′, 𝜃′, 𝑧′)|
 

 

(18) 

 
We have: 
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𝐴(𝑟, 𝑧) = 𝐴 (𝑟, 𝑧). 𝑒𝜃⃗⃗⃗⃗ 

= ∭𝑟′𝑑𝑟′𝑑𝑧′𝑑𝜃′
𝑘(𝑟′, 𝑧′)𝑒𝜃′⃗⃗ ⃗⃗  ⃗. 𝑒𝜃⃗⃗⃗⃗ 

|𝑥(𝑟, 𝜃, 𝑧) − 𝑥′(𝑟′, 𝜃′, 𝑧′)|

= ∬𝑑𝑟′𝑑𝑧′𝑘(𝑟′, 𝑧′)𝐺(𝑟, 𝑧; 𝑟′, 𝑧′) 

(19) 

 
Which gives, after a few manipulations [3] [4], the 2D kernel: 
 

𝐺(𝑟, 𝑧; 𝑟′, 𝑧′) = ∫
𝑒𝜃′⃗⃗ ⃗⃗  ⃗. 𝑒𝜃⃗⃗⃗⃗ 

|𝑥(𝑟, 𝜃, 𝑧) − 𝑥′(𝑟′, 𝜃′, 𝑧′)|

2𝜋

0

=
2𝑘

𝑟𝑟′
∫

2 𝑠𝑖𝑛2 𝜃 − 1

√1 − 𝑘2𝑠𝑖𝑛2𝜃
𝑑𝜃

𝜋/2

0

=
4𝑘

√𝑟𝑟′
[
𝐾(𝑘) − 𝐸(𝑘)

𝑘2
−

𝐾(𝑘)

2
] 

(20) 

 
Where we introduced the elliptic integrals of the first kind 
 

𝐾(𝑘) = ∫
𝑑𝜃

√1 − 𝑘2𝑠𝑖𝑛2𝜃

𝜋/2

0

 

(22) 

 
And of the second kind: 
 

𝐸(𝑘) = ∫ √1 − 𝑘2𝑠𝑖𝑛2𝜃
𝜋/2

0

𝑑𝜃 

(23) 

 
And in Equation (20) : 
 

𝑘2 =
4𝑟𝑟′

(𝑟′ + 𝑟)2 + (𝑧′ − 𝑧)2
 

(24) 

In summary, the big difference in the BEM method between 2D and 3D is the new 2D kernel: 
 
 

𝐺2𝑑
0 (𝑥 , 𝑥 ′) = 𝐺2𝑑

0 (𝑟, 𝑧; 𝑟′, 𝑧′)

=
4𝑘

√𝑟𝑟′
[
𝐾(𝑘) − 𝐸(𝑘)

𝑘2
−

𝐾(𝑘)

2
] 

(25) 

Which compares to Equation (9) in 3D. The gradient of the kernel (10) is computed using the same 
method. 
 

3 Features of the 2D axisymmetric solver 

3.1 Coupling of EM-2D with mechanical and thermal 3D 

 
Since LS-DYNA is primarily a 3D code, where most of the features are available only in 3D, we 
decided to couple the EM-2D with the 3D LS-DYNA. This means that the user needs to provide a 3D 
mesh as well as, for each conducting part, a segment set to define the plane where the EM-2D is 
done. Once the EM fields are computed in 2D on this plane, they are just reported over the full 3D 
mesh by rotations around the axis, since the EM fields are supposed to be axisymmetric. Solving the 
EM in 2D on a plane and applying rotations to get the 3D fields is much faster than computing the EM 
fields in 3D. The user needs to make sure that the mesh of the conductor parts actually have the 

axisymmetric  invariance. However, the simulation does not need to be made on a full 3600, but can 

be made on a slice of the full cylinder. This slice needs to be (
1

2
)𝑝 times the full cylinder (

1

2
, 

1

4
, 

1

8
, ...), if 

applying the proper mechanical and thermal boundary conditions at the 2 ends of the slice (no out of 
plane motion). Figure (1) shows a set up of such a simulation. 
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*EM_2DAXI 

PID SSID   StartSSID EndSSID NumSec    

3 3   1 2 32  

 
 

 
Figure 1 Example of a 2D axisymmetric part made of 1/32th of the full cylinder 

 
The Lorentz force and Joule heating are also computed in 2D and then reported by rotations over the 
3D mesh so that the 2D EM can be coupled with 3D mechanics and thermal. 
 

3.2 Coupling the EM 2D with external circuits  

All the *EM_CIRCUIT types existing in 3D can be used in 2D.  

For imposed current circuits, the total current through the part is imposed in the BEM system, since 
part of the variables represent the total currents flowing through each different circuits. 
For imposed voltage circuits, including R,L,C circuits, each voltage drop V is imposed on the scalar 
potential 𝜑 using Equation (14). 
 

3.3 Connecting different circuits together 

As with the 3D solver, one can connect different circuits together, i.e. impose a linear constraint on the 
global currents of 2 circuits (𝑐1𝑖1 + 𝑐2𝑖2 = 0), like, for example 𝑖1 = 𝑖2, using the 
*EM_CIRCUIT_CONNECT card. This allows for example the simulation in 2D of a spiral or helix coil. 

This circuit connect feature can even be used when the coil is connected to a R,L,C circuit, where the 
best results are when the R,L and C of the coil are evenly spread between the different 2D circuits. 

See Figure (2) (𝑅𝑖 =
𝑅

𝑁
, 𝐿𝑖 =

𝐿

𝑁
, 𝑉𝑜𝑖 =

𝑉𝑜

𝑁
, 𝐶𝑖 = 𝑁𝐶 if 𝑁 is the number of loops). 

 
*EM_CIRCUIT_CONNECT 

CONNID CONNTYPE CIRCID1 CIRCID2 C1 C2     

1 1 1 2 1 -1   

 

CONNID CONNTYPE CIRCID1 CIRCID2 C1 C2     

2 1 2 3 1 -1   
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CONNID CONNTYPE CIRCID1 CIRCID2 C1 C2     

3 1 3 4 1 -1   

 

 
Figure 2 Example of a spiral coil modelling using the axi symmetric solver and the circuit connect card 

 

3.4 EM contact in 2D 

The EM contact is available in the 2D solver. The contact uses the same cards as the 3D solver, and 
basically works the same way, with a local re-building of the BEM mesh around the contact areas.  
 

3.5 EM-2D coupled with EM-3D 

 
A coupling between the EM-2D and EM-3D is currently under development. This coupling will allow to 
model parts with nearly axisymmetric invariance, like a circular, spiral, or helical coil, along with other 
parts which do not have this symmetry. This should make the resulting simulations much faster than 
full 3D ones.  
 

4 Numerical results 

4.1 Helicoidal coil connected to a RLC circuit 

 
The first example is a ring expansion using a helicoidal coil. A R,L,C circuit will be used in order to 
highlight the capabilities of the *EM_CIRCUIT_CONNECT card. Figure (3)  shows the 2D set up and 
the 3D equivalent set up. Figure (4) shows the current density at a given time during the run and 
Figure (5) offers a comparison of the maximum displacement between the 2D and the 3D run.  
Agreement is quite good, and the slight disprepancies may be explained through some small 3D 
effects. The 3D problem took 2 hours on 24 CPUs while the 2D problem took 15 minutes on 1 CPU 
resulting in a significant gain of time. 
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Figure 3 Ring expansion using helicoidal coil : a) 3D set up, b) 2D set up. 

 
Figure 4 After expansion is complete. Current density fringes a) 3D, b) 2D 

 
Figure 5 Maximum displacement point. Comparison between 3D (in red) and 2D axisymmetric (in blue). 

4.2 Magnetic forming with spiral coil 

 
This case is a 2D version of the classic metal forming example available as a tutorial example on the 
LSTC website and presented in more detail in [1]. Figure (6) shows the 3D and 2D setups. The same 
die mesh can be used in both cases since it is an insulator and will be ignored by the EM solver. 
Figure (7) shows the current at different times between the 2D and 3D runs while Figure (8) shows the 
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displacement at different locations. Again, agreement between the results are good while 
discrepencies can be explained by 3D effects due to the shape of the coil. Indeed, the pitch of the 
spiral is not taken into account in 2D, where the coil is like a set of tori. This time, the 3D run took 5 
hours and 30 minutes on 12 CPUs while the 2D run took 5 minutes on 1 CPU. 
 

 
Figure 6 Magnetic metal forming with spiral coil : a) 3D setup, b) 2D set up. In both cases, the same die (in 

blue) is used. 

 

 
Figure 7 Displacement of the workpiece at different times. Comparison between 3D, a) and 2D b). 
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Figure 8 Comparison of displacements for a point near the center hole and the point of maximum 

displacement. 

 

5 Conclusion 

The new axisymmetric solver for EM was introduced. Among its features are MPP capabilities, the 
introduction of the circuit connect card which allows the modelling of helicoidal and spiral shaped coils 
as well as the use of R,L,C circuits and the possibility to model contact between conductors. Future 
developments will include the mixing of 2D and 3D parts in order to offer further options and tools to 
users who wish to reduce their calculation time and in order to run multiple trials for optimization 
purposes and potential coupling with LS-OPT. 
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