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1 Introduction 

This paper presents discrete element analysis models for studying quasi-static stress states in 
idealized granular materials subjected to gravity, and utilizes geometric packings and contact 
mechanics.  The theoretical description of granular materials in assemblies of microscopic particles is 
a challenging task. The particle assemblies characterize in-situ initial and boundary conditions. In turn, 
the conditions are used in solving the equations of motion of the particulate system under stress 
equilibrium states (via a network of particle contact forces and various degrees of dissipative 
interparticle friction). Using the discrete element analysis model of LS-DYNA [1], the influence of 
packing on contact stress distributions within an explicit time domain is investigated using idealized 
assemblies of spherical discrete elements and contact penalty springs. The validity of idealized 
geometric packings, as to whether uniformity can simulate granular fabrics, is still a matter of debate. 
However, the present study strictly focuses on the effects of micromechanical structures (idealized by 
assemblies of spherical discrete elements) in stress states at a macroscopic scale. In this context, the 
macroscopic scale is associated with the size of samples used for direct shear experiments in 
laboratory settings). 
Modeling of in-situ conditions in geotechnical engineering problems requires simulation of a geostress 
state known as the “at rest” condition, where stress equilibrium states of granular masses under 
gravitational body forces vary in phenomenological observations [2]. As a result, force propagations 
that arise due to externally applied forces are affected by these non-zero stress states. 

Phenomenologically, this is described by the ratio of horizontal, h , to vertical stress, v :   
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where the ratio is termed the coefficient of earth pressure at rest, oK . Note that oK  is defined as a 

function of the macroscopic characteristics, i.e., the angle of internal friction   [3]. Alternatively stated, 

the macroscopic kinematics of a control volume of the granular masses is the controlling 
phenomenological factor of the geostress equilibrium state at rest. This study is focused on various 
geometric packings (with uniquely characteristic coordination numbers) as a means of simulating 
geostatic equilibrium states through use of the discrete element method. The simulation results are 
discussed regarding selected modeling parameters. Cataloged coordination numbers, considered 
along with a set of discrete contact properties (interparticle frictional coefficients), are used in a 
parametric sensitivity study aimed at simulating the effects of granule-to-granule interlocking in the 
macroscopic characteristics. Macroscopic shear strengths, which vary per packing assembly, are 
investigated through use of a parametric matrix of direct shear test simulations. Based on the Biot 
theory and numerical results obtained from constrained chmaber test simulations, averaged stresses 
over a control volume of the assemblies are studied to qualitatively correlate macroscopic shear 
strengths of packing assemblies with existing semi-empirical methods. 

2 Geometric Packing 

The four packing assemblies used for this work are shown in Fig. 1, where the gray circles represent 
an individual row of spheres and the black circles represent the arrangement of spheres on the level 
above the gray set. These figures represent the unit cell for the packing, or the basic structure that 
repeats itself throughout the assembly. The first two sets of packing assemblies shown in Fig. 1 are 
the face centered cubic (FCC) and Rhombic (also referred to as tetrahedral or hexagonal close 
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packing). These two packing arrangements are theoretically considered to be the densest 
arrangement for uniformly sized spheres. 
The third and fourth packing assemblies shown in Fig. 1 are referred to as binary packing structures 
since two different sets of radii are present. The first binary packing developed is called the simple 
cubic binary, which is based on the simple cubic packing structure with the addition of smaller spheres 

(with radius minR ) located within the available space between layers of the larger sphere set ( maxR ). 

The second binary packing structure is referred to as the AB Binary. This packing was developed 
using the cubical-tetrahedral packing structure with the addition of smaller spheres located within the 
available space between layers of larger spheres. Summaries of the geometric packing assemblies 
are listed in Table 1. The coordination number is defined as the average number of contacts per 
sphere. It can be seen that the addition of a smaller sphere set increases the density of packing 
(corresponds to a smaller void ratio), but the coordination numbers of such binary packings are less 
than 12 as the limiting coordination number. 
 

 

Fig.1: Geometric Packing Assemblies 

Type of 
Packing 

Coordination 
Number 

Layer 
Spacing 

Porosity 
[%] 

Void Ratio min maxR R  

FCC 12 R2  25.95 0.35 1 

Rhombic 12 R322  25.95 0.35 1 

Simple Cubic 
BINARY 

11.1 2R 23.83 0.31 13   

AB BINARY 10.7 2R 22.65 0.29 137   

Table 1: Properties of Geometric Packings for use in LS-DYNA Discrete Element Analysis:  Layer 

spacing for binary packing based on maxR  

In the present study of macroscopic-scale shear behaviors of idealized packings, discrete element 
analysis models are developed using LS-DYNA. The motion of each sphere is computed using 
Newton’s laws of motion, allowing for both translations and rotations at the centroid. Interactions 
between spheres are controlled through specification of frictional coefficients, along with spring and 
damping constants, which are defined in both normal and tangential directions to the plane of 
spherical surface contact [4]. A penalty-spring method is used by defining the 
*CONTROL_DISCRETE_ELEMENT card. Material properties such as mass density and bulk moduli are 

defined using material definition cards (e.g., *MAT_ELASTIC). Note that capillary forces were not 

utilized in the current study; a summary of the DEM input parameters used in this study are listed in 
Table 2. Three values of FRIC, the interparticle sliding friction coefficient (0.1, 0.3 and 0.5), are used in 
a parametric study to develop a range of   values in conjunction with the aforementioned packing 

structures. Normal and tangential damping parameters, NDAMP and TDAMP respectively, are used to 
ensure numerical stability and are recommended values from Karajan [4]. The focus of this work is 
placed solely on the effects that the packing assemblies and FRIC values have on macroscopic   

behavior, thus the frictional rolling coefficient FRICR is set to zero. The normal-contact spring scale 
factor, NORMK, is set 1 and the ratio of tangential to normal stiffness, SHEARK, is set to 0.5 as used 
by Cil [5]. Mass density and modulus values are selected to prevent significant particle overlapping for 

FCC Rhombic Simple Cubic 
BINARY 

AB BINARY 
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the magnitudes of pressure imposed during the direct shear and chamber tests, while also promoting 
practical computational times. 
 

LS-DYNA Discrete Element Analysis  Parameter Value 

Radius 5 mm 

NDAMP 0.70 

TDAMP 0.40 

FRIC 0.1, 0.3, 0.5 

FRICR 0 

NORMK 1.0 

SHEARK 0.5 

Mass Density 3,000 kg/m3 

Elastic Modulus 300 MPa 

Poisson’s Ratio 0.33333 

Table 2: Input Parameters of LS-DYNA Discrete Element Analysis  

3 Simulations of Direct Shear Test 

Direct shear tests (DST) are simulated to quantitatively characterize the macroscopic shear behaviors 
of the packings. The model shown in Fig. 2a is comprised of a box that houses the discrete elements. 
This box is divided in half horizontally; the upper half is laterally displaced according to a prescribed 
displacement boundary condition, while the lower half is held fixed. The top plate allows for the 
application of a constant normal pressure during shearing. Two overhanging plates are positioned in 
front and behind the direction of shearing to prevent discrete elements from escaping. 

 

Fig.2: Direct Shear Test: a) Isometric View b) Applied Pressure and Gravitational Acceleration c) 
Prescribed Displacement Curve d) Prescribed Displacement. 

a) b) 

c) d) 

200 mm 

50 mm 

200 mm Normal Pressure 

Gravitational Acceleration 

Prescribed Displacement 
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3.1 Direct Shear Analysis Model  

The walls of the DST model consist of fully-integrated four-node shell elements, which are paired with 
the *MAT_RIGID material model. Constitutive parameters used to populate the *MAT_RIGID card are 

set equal to those of the discrete elements listed in Table 2. Shown in Fig. 2b are the applied pressure 
to the top plate and gravitational acceleration (9.81 m/s2) is applied to the discrete spheres. All 
excitations are applied quasi-statically by making use of the *CONTROL_DYNAMIC_RELAXATION card. 

Boundary conditions for the shell elements are specified using constraint options available with the 
*MAT_RIGID card. The bottom box and front overhanging plate have all degrees of freedom 

restrained from motion. The top box, top plate, and back overhang plate are free to translate in the 
direction of shearing, in this case the X-direction, and are restrained from motion in the Y direction. For 
the top box, top plate, and back overhang plate, X-direction motion is prescribed for a total distance of 
10 mm over 60 seconds of simulation time (Fig. 2c-d). The top box and back overhang plate are 
restrained from vertical (Z) motion, whereas the top plate is permitted to translate vertically to allow for 
vertical displacements of the discrete element mesh. 
The DST apparatus (Fig, 2a) is 200 mm in width by 100 mm in height. Each packing assembly can 
have a different sized unit cell for the same specified radius, thus not all packing assemblies can fill 
the respective, specified domains without gaps developing between spheres and the DST walls. 
Any gaps between arrays of spheres and the walls of the DST apparatus are not ideal.  When initial 
gaps are present, application of gravitational accelerations or applied normal stress may cause 
significant rearrangement of the sphere arrays due to absence of lateral confinement. To account for 
such gaps, the DST dimensions in both the X and Y directions are scaled so as to encase the 
assembly, (i.e., initial gaps are approximately equal to 0 mm). Contact between the discrete spheres 
and shell elements is specified using the *CONTACT_AUTOMATIC_NODES_TO_SURFACE card. The 

coefficient of sliding friction used in the shell-spheres contact is set equal to FRIC (Table 2). 

3.2 Estimation of Angles of Internal Friction 

To estimate the frictional resistance of the packing, normal stresses are applied, and the 
corresponding maximum shear stresses are plotted. Shear stresses on the samples are calculated by 
first measuring lateral forces (in the direction of shearing) acting on the top box and plate. These 
forces are recorded using the *DATABASE_RCFORCE card and are divided by the cross sectional area 

of the sample. An example of this process begins with Fig. 3a, which is shear stress versus shear 
strain for testing of the Rhombic packing assembly, FRIC = 0.3, and normal stresses of 50, 100 and 
150 kPa. Peak shear stress values are found for each normal stress and are summarized in Table 3. 
These pairs of points are then plotted in Fig. 3b, for which a regression line can be fitted using a least-
squares approximation. The angles of internal friction ( ) are determined per the slope of the fitted 

line. For the Rhombic packing example, using the fitted line from Fig. 4:  1 tan 1.1535 49.1     . 
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Fig.3: Direct Shear Test Results: Rhombic FRIC =0.3 Normal Stress = 50, 100, and 150 kPa. a) 
Shear Stress versus Shear Strain b) Shear Stress versus Normal Stress 
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Normal Stress [kPa] Peak Shear Stress [kPa] Void Ratio Before Shearing 

50 67.3 0.433 

100 125.4 0.431 

150 182.7 0.429 

Table 3: Stresses Averaged over Failure Plane 

3.3 Parametric Simulation Results 

Results from the parametric study for various combinations of packing assemblies and coefficients of 
friction are shown in Fig. 4. For the rhombic and FCC packing, there is a relationship between 
coefficient of friction and  . For the binary packing assemblies, a relationship is not as readily 

apparent (  does not increase as significantly for increasing values of FRIC).  

  

Fig.4: Parametric Results from Direct Shear Test. 

It is also observed that   for the FCC packing is greater than that of the Rhombic packing. As 

reported by O’Sullivan [6], for two physical triaxial compression tests of 12.7 mm diameter steel 
spheres,   values of 41.6° and 24.6° were measured for Rhombic and FCC packings, respectively. 

O’Sullivan [6] also reported comparable results for DEM modeling of the triaxial compression tests 
using a FRIC value of 0.096, resulting in   values of 42° and 23.5° for Rhombic and FCC packings, 

respectively. Additionally, theoretical expressions to estimate the peak strength of Rhombic packings 
(Rowe [7]) and FCC packings (Thorton [8]) show agreement in that for any value of interparticle 
friction, the Rhombic packing will have a higher peak strength than that of the FCC packing. These 
theoretical expressions are shown in Eqns. 2 and 3 for Rhombic [7] and FCC [8] packings, 
respectively.  
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where 1  is the major principle stress and 3  is the minor principle stress. Using Eqn. 4,   can be 

evaluated using principal stresses, and can be combined with Eqns 2-3, to evaluate   as a function of 

FRIC (recall Table 1): 

 

 
1 31

1 3

sin
 


 


 

  
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 (4) 
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Results of this combination are shown in Fig. 4 as dashed lines. Validation of the previously discussed 
DST apparatus was carried out by comparing results from numerical direct shear tests to results 
reported in O’Sullivan [9]. The validation consisted of modeling steel spheres arranged in a random 
packing. The DST, as modeled in the current study, produced a   of 21.1°, where over the course of 

repeated testing, O’Sullivan [9] measured   values ranging from 22.7° to 26.2°. The comparable 

benchmarking results (for randomly distributed spheres) suggest that geometrical arrangement of the 
packing assemblies may lead to significant differences in   values observed in triaxial versus direct 

shear testing. Future research is needed to explore such differences.  

4 Scale-Dependent Stress States 

To evaluate the stress state of each geometric assembly, a chamber test is conducted. The chamber 
test is shown in Fig. 5a, and has dimensions of 500x500x1000 mm. Lateral confinement for the 
chamber is provided by constraining the degrees of freedom of the spheres initially positioned nearest 
to the boundary of the chamber, Fig. 5b. Spheres located on the bottom of the chamber have all 
degrees of freedom (translations and rotations) restrained. Spheres located on the edge of the 
chamber are only permitted to translate in the vertical (Z) direction. Gravitational acceleration (9.81 
m/s2) is applied to the discrete elements quasi-statically through use of the 
*CONTROL_DYNAMIC_RELAXATION card. After the assembly reaches a quasi-static force equilibrium 

state, stresses in both the horizontal direction and vertical direction are cataloged. The cataloged 
stresses constitute average stresses for individual spherical volumes of the discrete elements, 

 local

ij [10]:   

1 






cn

i j
local i
ij

sphere

f b

V
 (5) 

where cn  is the number of contacts, f  is the vectorial contact force, b  is the branch vector from the 

centroid to the point of contact, and sphereV  is the sphere volume. An example of results for  local
 in 

the Z direction are shown in Fig. 6a for the chamber test (using Simple Cubic Binary Packing and a 
FRIC value of 0.3). As shown, the stress profile increases linearly with depth and is constant in the 
horizontal direction. Note that it was verified that lateral confinement provided by the constrained 
spheres does not have a significant impact on the resulting sphere stresses near the chamber 
boundaries.   

Importantly, computations of v  and h  across the range of packings considered necessitate the 

definition of a control volume, which in turn, determines volume-averaged shear resistance, i.e., the 

value of   (recall Fig. 2). Over a control volume cvV , the averaged stress,  total
, is calculated as:    

 
 

  
 
 


p

total localcv s

ncv

V V

V
 (6) 

which pn  denotes the number of discrete elements within cvV  and sV  is the volume of solid phase; 

 s p sphereV n V . Thus, macroscopic stresses estimated using Eqn. 6 depend on the size of the control 

volume per continuum-based approaches. For Simple Cubic Packing (with a FRIC value of 0.3), the 

profiles of v  and h  (calculated using Eqn. 6) are shown in Fig. 6b and the corresponding oK  is 

plotted in Fig. 6c. Both v  and h  profiles increase linearly with depth. In turn, oK  remains constant 

throughout the depth. 
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Fig.5: Chamber test: a) Isometric View and Dimensions b) Gravitational Acceleration and Boundary 
Conditions. 

 

 

Fig.6: Simple Cubic Binary Packing with FRIC = 0.30: a) Variation of v b) Comparison of v  and 

h   c) Corresponding oK . 
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These resulting oK  values are shown in Fig. 7. It can be seen for all geometric assemblies that 

increasing FRIC values correspond to decreases in oK  values. It can also be seen that the FCC 

packings develop the upper limit oK  values, whereas the Rhombic packings develop the lower limit 

values (for the range of parameters considered). oK  versus   from direct shear test simulations are 

shown in Fig. 8. Comparing these results with Eqn. 1 (the solid line in Fig. 8), the idealized packings 
considered bound macroscopic-scale behaviors of coarse-grained soils (e.g., sand) as theorized by 
Jacky [3]. In consideration of the angularity and sphericity of sand particle shapes, Hendron [11] 
proposed:  

6 6
1 3 sin

1 8 8

2 6 6
1 3 sin

8 8

oK





 
  

  
 
   

 (7) 

 

Eqn. 7 seems to provide a good bounded solution of oK  for numerically simulating macroscopic-scale 

shear behaviors of sands (using FCC packing assemblies of elastic spherical discrete elements with a 
uniform radius). 
 

 

Fig.7: oK versus FRIC: Eqns. 2, 3, 4, and 7 are combined to determine oK  as a function of FRIC for 

the FCC and Rhombic packings 

5 Summary 

This paper presents an analysis of volume-averaged stress states simulated over various geometric 
packing assemblies. A parametric study using direct shear test simulations is conducted to quantify 
the angle of internal friction ( ) for several types of packing. The   values obtained from the direct 

shear test simulations indicate that geometric interlocking of the idealized assemblies impacts the 
numerical simulation of in-situ conditions. It is, thus, possible that the physical interlocking 
phenomenon at granule-scales can be simulated for idealized assemblies of discrete spherical 
elements with diameters that are relatively much larger than, in turn, the mean diameters of sand 
particle-size distributions. Numerical simulation results illustrate that  predictions of   values using the 

rhombic and FCC packings are much greater than those observed in laboratory experiments on 

coarse-grained soils. As for the various geometric packings considered, oK  can vary with the size of 

the discrete elements, as well as the predetermined control volume used to calculate macroscopic 

stresses. The idealized packing assemblies can additionally be used to chracterize the bounds of oK  
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and   for granular soils in in-situ conditions. This is particularly feasible when granular assemblies 

are simulated with consideration of spatial distribuitons (patterned or random) and other microscopic 
scale variations (e.g., shape and size distributions of granules).   
 
 

 

Fig.8: oK versus  .  
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