LS-DYNA Model Development of the Harmonized Hybrid III 05F Crash Test Dummy

Chirag Shah², Christian Kleeßen¹, Robert Kant¹, Paul Lemmen¹

¹Humanetics Europe GmbH, Heidelberg, Germany ²Humanetics Innovative Solutions, Inc. Plymouth, Michigan, USA

1 Introduction

- Euro NCAP 2015 Protocols

2 H305 Jacket comparison

Different structure, geometry and materials -> different response

Fig.2: H305 Jacket hardware design comparison

3 Harmonized rib model validation

▶ FT, Denton and Humanetics ribs show different nominal performance

Fig.3: Single rib drop test

4 Thorax Enhancements

4.1 New harmonized SAE jacket from CT scan data

New Harmonized SAE jacket update from CT scan data

- Thicknesss details for each layer
- Jacket fitting is simulated and verified against final state scan

Fig.4: Harmonized SAE jacket

4.2 New material testing and materials modeling

New material testing and materials modeling

- Material models optimized to function in the essential loading modes

Fig.5: Material test matrix for thorax model

4.3 Material enhancement and verification

- Bib material bending behavior enhancement for upper thorax kinematics

Bib material validation and thorax stress distribution

4.4 Thorax stamp testing

- Stamp tests with a controlled displacement over time on the thorax
- Stress and deformation mode similar to vehicle simulations

Fig.7: Stamp test impact locations

Fig.8: Stamp test pre-simulations to verify load levels

5 Harmonized thorax model validation

- Confirm thorax model against current hardware

2nd row belted			Full dummy		
		# loa	# load cases 3 pulses 3 belt load levels		
5.// 40000000	5//4000000	Dummy	Pulse	Load Limiter	n
x x x x x x x x x x x x		Humanetics Harmonized	Pulse 1	4 kN CFR	3
			Pulse 2	3.5 kN CRF	3
			Pulse 3	4 kN CFR	3
			Static Pretensioner	-	2
		First Tech	Pulse 1	4 kN CFR	2
			Pulse 2	3.5 kN CRF	2
			Pulse 3	4 kN CFR	2
		Denton	Pulse 1	4 kN CFR	2
		Dummy component "Mixture"	Pulse 1	4 kN CFR	2
			Pulse 2	3.5 kN CFR	2
					Total = 23

Fig.9: Sled tests rear occupant; analyze hardware variability

6 Borderline chest model

- 3m/s certification test allows 4,5mm spread
- Euro NCAP chest model prepared for borderline model development

Fig. 10: Thorax low speed certification test and model prediction

7 Additional Euro NCAP enhancements

▶ Euro NCAP compliant Neck shield model implemented

• Lower leg flesh (Denton) CT scanning and model development (reference Harmonized H350)

Fig.11: Euro NCAP specific adjustments

8 Neck model development

8.1 Neck material validation

- neck material tests based on harmonized hardware

Fig. 12: Neck material test matrix

8.2 Neck torsion validation

Fig.13: Test setup for neck torsion test

Fig.14: Pre-simulations to address load levels

9 Summary

- Euro NCAP requires use of the HII-5th percentile for its full width frontal barrier test procedures
 - Dummy should be according to the latest agreed harmonization
- An LS-DYNA model for this dummy is being developed
 - The model is being optimized to predict the nominal response
- Chest hardware variability can cause significant variation in the final Euro NCAP tests
 - The model allows to explore the influence of chest hardware variability