

# 13. LS-DYNA<sup>®</sup> Forum 6 – 8 Oktober 2014, Bamberg, Germany

# Workshop Kontakte in LS-DYNA®

N. Karajan, T. Graf, F. Andrade {nik, tg, fia}@dynamore,de

**DYNAmore GmbH, Stuttgart (Germany)** 



# **Overview**

- Contact Search and Contact Treatment
- Defining Contacts in LS-DYNA
- Definition of Friction
- Contact Thickness
- Contact Stiffness
- Initial Penetrations
- Tied contacts
- Contact Output
- Summary
- Recommendations



- Penetration of nodes into the opposite segment has to be checked
- Two steps for better performance during the search for contact partners:
   Global search: Searching nodes and segments of possible contact candidates
   Local search: Check for penetration between nodes and segments
- Applying contact condition:
  - Penalty method
  - Kinematic constraint method





- Global and local contact search in more detail □ Global search
  - Internal procedure
    - 1. Volume is partitioned into buckets
    - 2. Loop over all master segments:



- a. For each master segment, a list of crossed buckets is created
- b. Orthogonal distances of all nodes to the master segment are calculated
- c. Each node k stores the closest, second/third/... closest segment (for most contact types that's two segments per node)
- 3. Each node stores the nearest nodes on these segments permanently
- Local search with the segments and nodes found by the bucket sort
- Execution of bucket sort every 10-200 cycles, (every cycle in case of implicit simulations)
- Parameters of interest: SMP: BSORT, DEPTH (\*CONTACT, optional card A) MPP: BCKT, NS2TRC (\*CONTACT, MPP card)





#### $\hfill\square$ Local search:

- Applied in each time step!
- Accurate search for interpenetration only for the contact candidates found in global search
- Bucket sort: Nearest master node(s) is/are found for slave node
- Identifying master segments for slave node
- Compute the orthogonal distance (normal projection) of the slave node to the master segments by solving the following system of equations

 $X_3$ 

$$\frac{\partial \mathbf{r}(\xi_c, \eta_c)}{\partial \xi} \cdot [\mathbf{t} - \mathbf{r}(\xi_c, \eta_c)] = 0$$
$$\frac{\partial \mathbf{r}(\xi_c, \eta_c)}{\partial \eta} \cdot [\mathbf{t} - \mathbf{r}(\xi_c, \eta_c)] = 0$$

- Then, check for penetrations

$$g = \mathbf{n}_m \cdot [\mathbf{t} - \mathbf{r}(\xi_c, \eta_c)]$$

 $g \leq 0 \rightarrow \text{penetration}$ 







- Penalty method to treat the contact
  - Contact treatment is internally represented by linear springs between the slave nodes and the nearest master segment
  - Resulting forces proportional to the penetration are applied to resist, and ultimately eliminate, the penetration
  - □ Contact stiffness calculation
    - Penalty-based approach
      - » Segments on solid/shell elements:
      - » K : slave/master bulk modulus
      - » Default: Min. value of slave/master is used
    - Contact stiffness affects critical time step of simulation
      - » Critical time steps of contact springs are generally not taken into account (it is not certain that the contact springs are really activated)
      - » Estimation of contact time step is printed on the d3hsp: "The LS-DYNA time step should not exceed ..."
      - » If necessary, scale time step using TSSFAC or the contact stiffness
      - » Contact time step can be considered using eroding contact types, ECDT (\*CONTROL\_CONTACT)



$$k = \frac{f_S A^2 K}{V}$$
 and  $k = \frac{f_S A K}{d_{\min}}$ 



Kinematic constraint method to treat the contact

□ Impact and release conditions of Hughes et al. [1976]

- Constraints are imposed on the global equations
  - Transformation of the nodal displacement components of the slave nodes along the contact interface
  - Eliminating the normal degree of freedom of the slave nodes
  - Interpenetrating nodes are moved back to surface
- Problems:
  - Rigid bodies cannot be handled correctly (multiple constraints)
  - Either energy or momentum is preserved, never both





- Different treatment of sliding interface contact
  - One-way treatment
    - Slave nodes are checked for penetration through master segments
    - Slave side needs to be the finer mesh
  - Two-way treatment
    - Slave nodes are checked for penetration through master segments and master nodes are checked for penetration through slave segments
  - □ Single surface contact
    - Contact is considered between all parts in the slave list including self-contact of each part, no master surface is defined





- One-way contact types
  - Only the user-specified slave nodes are checked for penetration through master segments
  - □ Applications:
    - Appropriate when master side is rigid, e.g., a punch in metal stamping
    - Appropriate for deformable bodies when a relative fine mesh (slave) encounters a relatively smooth, coarse mesh (master)
  - □ Examples:

- \*CONTACT\_AUTOMATIC\_NODES\_TO\_SURFACE (type a5)
- \*CONTACT\_AUTOMATIC\_ONE\_WAY\_SURFACE\_TO\_SURFACE (type a10)



- Two-way contact types
  - Slave nodes are checked for penetration through master segments and master nodes are checked for penetration through slave segments
  - i.e., the treatment is symmetric and the definition of the slave and master surface is arbitrary
  - Increased cost of approximately a factor two
  - □ Examples:
    - \*CONTACT\_AUTOMATIC\_SURFACE\_TO\_SURFACE (type a3)
    - \*CONTACT\_FORMING\_SURFACE\_TO\_SURFACE (type m3)



- Single surface contact types
  - Contact is considered between all parts in the slave list including self-contact of each part and no master surface is defined
  - very reliable and accurate contact type, if the model is accurately defined
  - If several interpenetrations exist in the initial conditions, energy balances show either a growth or decay of energy as calculation proceeds
  - Examples:
    - \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE (type 13)
    - \*CONTACT\_AUTOMATIC\_GENERAL\_{INTERIOR} (type 26)
      - $\rightarrow$  shell edge-to-edge and beam-to-beam contact is treated automatically





- Defining Contacts in LS-DYNA
  - Card ordering for \*CONTACT\_OPTION....

 $\square$  Card for ID Option  $\rightarrow$  CID, heading

 $\square$  Card 1 (mandatory)  $\rightarrow$  slave/master, box, print flags

 $\square$  Card 2 (mandatory)  $\rightarrow$  friction, viscous damping, birth- death-time

 $\square$  Card 3 (mandatory)  $\rightarrow$  penalty stiffness, optional thickness, friction scaling

□ Card 4 only mandatory for the following contact types:

\*CONTACT\_CONSTRAINED\_type \*CONTACT\_DRAWBEAD \*CONTACT\_ERODING\_type \*CONTACT\_...\_INTERFERENCE \*CONTACT\_RIGID\_type \*CONTACT\_TIEBREAK\_type Card for THERMAL option Optional card A; soft constraint, MAXPAR, ... Optional card B; PENMAX, optional solid thickness, ...





**Defining contacts in LS-DYNA** 

\*CONTACT AUTOMATIC SINGLE SURFACE TITLE \$ CIDI NAME | 1 Global Contact - all parts against all parts \$ SSIDI MSIDI SSTYPI MSTYPI SBOXID MBOXID SPRI MPR | Cards 1 - 3\$ FSI FDI DCI VCI VDC | **PENCHK** BTI DT are mandatory for each 0.2 0.2 20.0 1.0 \*CONTACT Definition SEMT FSF \$ SFSI SFM SSTI MSTI SFST VSFI 0.0 0.0 Card 4 is missing \$ SOFT SOFSCLI LCIDAB MAXPAR PENTOL DEPTH BSORT FRCFRQ for this contact type! 1 \$ PENMAX THKOPT | SHLTHK SNLOG ISYM I2D3D SLDTHK SLDSTF \$ IGAP IGNORE DPRFAC DTSTIF FLANGL CID RCF| Optional Cards A - E 1 SFNBR \$ Q2TRI DTPCHK | FNLSCL | DNLSCL TCSOI TIEDID SHLEDG SHAREC CPARM8 | IPBACK SRNDE |



# **Defining Contacts in LS-DYNA**



Keyword input format: \*CONTACT\_AUTOMATIC\_SURFACE\_TO\_SURFACE



**Defining contacts in LS-DYNA** 



# Definition of Friction

- Node of element 1 is checked against segment of element 2
- Mode of operation



 Compression loads are transferred between the slave nodes and the master segments

Tangential loads are transferred when contact friction is active



#### Friction

 $\hfill\square$  rigid walls

- frictionless sliding after contact
- no sliding after contact
- Coulomb friction

 $\square$  other contact surfaces

- Coulomb friction



where

 $\mathbf{F}^T$ 

7777

 $\mathbf{v}_{rel}$ 

 $\mathbf{F}^N$ 

$$\mu = \mu_d + (\mu_s - \mu_d) \exp(-d_c |\mathbf{v}_{\rm rel}|)$$

- with:  $\mu_s$  static coefficient of friction
  - $\mu_d$  dynamic coefficient of friction
  - $d_c$  exponential decay factor (keep units in mind)
- viscous friction to limit friction force (yielding of materials)
- $\mathbf{F}_{ ext{lim}} = \mu_v \, \mathbf{A}_c$

- with:  $\mu_v$  coefficient for viscous friction
  - $\mathbf{A}_{c}$  area of the segment contacted



#### □ Coulomb friction

$$\label{eq:relation} \boxed{\mathbf{F}^T \leq \mu \, \mathbf{F}^N} \quad \text{where} \quad \mu = \mu_d + (\mu_s - \mu_d) \exp(-d_c \, |\mathbf{v}_{\rm rel}|)$$



- FS: Static coefficient of friction
- FD: Dynamic coefficient of friction
- DC: Exponential decay coefficient
- VC: Coefficient for viscous friction
- FSF: Coulomb friction scale factor
- VSF: Viscous friction scale factor



## □ \*PART\_CONTACT (\*CONTACT-Keyword: FS=-1)



- available for the following contact formulations:
  - » \*CONTACT\_AUTOMATIC\_NODES\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_ONE\_WAY\_SURFACE\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_SURFACE\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE
  - » \*CONTACT\_AIRBAG\_SINGLE\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_GENERAL
  - » \*CONTACT\_SINGLE\_SURFACE
  - » \*CONTACT\_ERODING\_SINGLE\_SURFACE



### □ \*DEFINE\_FRICTION (\*CONTACT-Keyword: FS=-2)



- if more than one DEFINE\_FRICTION-card is defined, FD (\*CONTACT\_) references ID
- available for the following contact formulations:
  - » \*CONTACT\_AUTOMATIC\_NODES\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_ONE\_WAY\_SURFACE\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_SURFACE\_TO\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE
  - » \*CONTACT\_AUTOMATIC\_GENERAL
  - \*CONTACT\_SINGLE\_SURFACE
  - » \*CONTACT\_ERODING\_SINGLE\_SURFACE



# Automatic Contacts and Contact Thickness

- \*CONTACT AUTOMATIC ....
  - Often large deformations with changing contact situations
  - Predetermination of contact is difficult to impossible
  - Non-oriented AUTOMATIC contact types are recommended with penetration detection coming from either side of the shell elements
  - □ To avoid instabilities slave nodes that penetrate "too far" are eliminated/released
    - e.g. \*CONTACT AUTOMATIC SINGLE SURFACE with shell to shell contact d = 0.4 x (master thickness + slave thickness)
    - Very high forces due to large penetrations are not applied
    - Release criteria might be controlled by PENMAX and XPENE
  - Thickness offset: Segment based projection

# □ Advantages:

- Simultaneous contact on both sides of shell surfaces is possible
- Segment orientation is meaningless
- Easy to use

# Disadvantages:

- If shell thickness to small, nodes may penetrate and be released
  - $\rightarrow$  contact thickness must be re-defined





# Automatic Contacts and Contact Thickness

Contact thickness



- □ Contact thickness is considered and generally taken as the shell thickness using
  - Single surface
  - Constraint method and
  - Automatic node-to-surface or surface-to-surface contact types
- Shell thickness is considered for non-automatic node/surface to surface contact types if SHLTHK=1 or 2 (\*CONTROL\_CONTACT)
- □ Contact thickness of shell elements can be modified using
  - SST and MST (Card 3 in contact definition)
    - $\rightarrow$  absolute value; overrides true thickness; definition holds for whole contact
  - SFST and SMST (Card 3 in contact definition)
    - $\rightarrow$  scaling factor; scales true thickness; definition holds for whole contact
  - OPTT (\*PART\_CONTACT)
  - absolute value; overrides thickness modifications in contact definition; definition holds for every individual part; applies to shell and beams





□ \*CONTACT\_... keyword card



- SINGLE\_SURFACE-contacts:
  - Default contact thickness is a function of SSTHK (\*CONTROL\_CONTACT)
  - SSTHK=0: SST = min $(t, 0.4 l_{min}^{edge})$
  - SSTHK=1: SST = t

\*CONTACT\_AIRBAG\_SINGLE\_SURFACE: Contact thickness vs. time can be specified using LCIDAB (\*CONTACT, optional card A)

### **Automatic Contacts and Contact Thickness**



 A cylindrical surface is created in the gap between two shell segments to avoid unwanted penetrations



\*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE
 Slave node is only considered in the contact algorithm, if normal projection on contact segment lies within the contact segment or within a surrounding area with a width of 0.5\*contact\_segment\_length



**Automatic Contacts and Contact Thickness** 





**Automatic Contacts and Contact Thickness** 

Numerical example "Shell rebounds from plate"
 Investigate influence of contact thickness

Contact behavior of volume elements

- By default, contact area "lies within" the volume element



 The usage of contact types with an automatic release of too far penetrated nodes, e.g., \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE, SOFT={0|1}, can result in poor contact behavior:

» The computed contact thickness of volume elements (based on volume and area) is generally lower than the contact thickness of shell elements,

e.g., \*CONTACT\_ASS: contact thickness = 0.4 x volume/area

- » The maximum penetration is based on the contact thickness, e.g., \*CONTACT\_ASS: d = 0.5 x contact thickness
- » Thus, the penetrating nodes are released much earlier than in the case of contact problems with shell elements



- Using SLDTHK (optional card B), "virtual dummy shells" may be automatically generated in order to cover the surface of the solid part
- Optional solid element stiffness (only for contact treatment) can be modified using SLDSTF (optional card B)



Automatic Contacts and Contact Thickness



- Numerical example displacement driven, \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE
  - » Shell to shell is reference (curve A black)
  - » Nodes are released much earlier in standard shell to solid and solid to solid contact treatment (curve B – red, curve C – blue)
  - » Contact thickness is equal to shell to shell contact using SLDTHK
  - » Two contact problems arise using SLDTHK (top and bottom of solid part)
  - » Global stiffness depends on the number of nodes in contact (curve C and D)



#### **Automatic Contacts and Contact Thickness**

### Contact Stiffness

Penalty method – calculation of contact spring stiffness
 SOFT=0

Segments on solids:  $k_{\{S/M\}} = \text{SLSFAC} \{\text{SFS/SFM}\} K_{\{S/M\}} \frac{\mathcal{I}_{\{S/M\}}}{V_{\{S/M\}}}$ 

Shell elements:  $k_{\{S/M\}} = \text{SLSFAC} \{\text{SFS/SFM}\} K_{\{S/M\}} \frac{I_{\{S/M\}}}{D_{\{S/M\}}^{\max}}$ 

K: Bulk modulus of slave/master
SLSFAC: Penalty scale factor (\*CONTROL\_CONTACT) (DEFAULT : 0.1)
SFS/SFM: Scale factor on slave/master (DEFAULT : 1.0)
A, V: Area, volume

- By default, the stiffness of the contact springs is given via  $k = \min\{k_S, k_M\}$ - Other possibilities can be defined using PENOPT (\*CONTROL\_CONTACT) - If the stiffness of the materials is dissimilar, SOFT=0 is not recommended



#### **Contact Stiffness**

- Penalty method calculation of contact spring stiffness
  - SOFT=1 To consider contact between parts with different material stiffness
    - Automatic optimization of the each single contact spring stiffness
    - Calculation of contact spring stiffness is based on the Courant-Friedrichs-Lewy-criterion of a discrete spring element:

$$\Delta t_{\rm crit} = 2\sqrt{\frac{m_1 m_2}{(m_1 + m_2) k}} = \sqrt{\frac{2M_1 M_2}{(M_1 + M_2) k}} \quad \rightarrow \quad k_{\{\rm SOFT=1\}} = f\left(1/\Delta t^2, \, M_m, \, M_s\right)$$

$$\rightarrow \quad k = \max\{k_{\{\text{SOFT}=0\}}, \text{ SOFSCL} \cdot k_{\{\text{SOFT}=1\}}\}$$

- Default: Scaling factor SOFSCL=0.1
- SOFT=1 is recommended for impact analysis, where dissimilar materials come into contact
- For the case of soft foam contacts metal, SOFT=1 gives interface stiffness that are one or two orders greater
- Time step for calculation of k can be specified by the user:
   \*CONTACT\_, Optional C, DTSTIF
- Occasionally, numerical instabilities in the contact behavior (d3hsp) occur
   → reduction of SOFSCL from the default value of 0.1 to 0.04-0.07 is recommended



#### **Contact Stiffness**

Numerical example "Shell rebounds from plate"

□ Investigate influence of SOFT for parts with different stiffness

- Red Material:  $E_{\rm red} = 210.0 \, {\rm GPa}$
- Blue Material:  $E_{\text{blue}} = 0.01 \cdot E_{\text{red}}$



**Contact Stiffness** 



# Initial Penetrations

In general, initial penetration occurs if one or more nodes are within the contact range of their master segment during initialization of LS-DYNA





#### □ finding initial penetrations with check-c (DYNA*more* tool $\rightarrow$ <u>www.dynamore.de</u>)

| usage: che           | eck-c [options] messag-file[s]                                                                                                                                                                                                                                                                                                                    |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| options:             |                                                                                                                                                                                                                                                                                                                                                   |
| -list                | list all warned penetrating nodes                                                                                                                                                                                                                                                                                                                 |
| -top ##              | list and output top ## values (default: ##=5)                                                                                                                                                                                                                                                                                                     |
| -ptol ##             | list and output only penetrations/separations > ##                                                                                                                                                                                                                                                                                                |
| -sid #,#,            | check only SIDs #, #,                                                                                                                                                                                                                                                                                                                             |
| -bucket              | show penetration buckets for each interface                                                                                                                                                                                                                                                                                                       |
| -pid                 | print property for penetrating node                                                                                                                                                                                                                                                                                                               |
| -psum                | print property penetration summary                                                                                                                                                                                                                                                                                                                |
| -rsort               | sort for remaining distance                                                                                                                                                                                                                                                                                                                       |
|                      | (default: sort for penetrating distance)                                                                                                                                                                                                                                                                                                          |
| -rtol ##             | list and output only penetrations that have                                                                                                                                                                                                                                                                                                       |
|                      | a remaining distance < ##                                                                                                                                                                                                                                                                                                                         |
| -title               | print contact titles if available (read d3hsp-file)                                                                                                                                                                                                                                                                                               |
| -hsp <file></file>   | d3hsp filename if other than "d3hsp" (needed for -title)                                                                                                                                                                                                                                                                                          |
| -typ                 | print contact type (eg: a3, 13, a13)                                                                                                                                                                                                                                                                                                              |
| -typ -typ            | print contact type in keyword (eg: SINGLE_SURFACE)                                                                                                                                                                                                                                                                                                |
| -timestep            | print contact timestep if available                                                                                                                                                                                                                                                                                                               |
| -all                 | list all contacts (even without any NorkShop Joy 8:20                                                                                                                                                                                                                                                                                             |
|                      | (usefull with -timestep and -typ) (WOIL dnes0a)                                                                                                                                                                                                                                                                                                   |
| -g <d3plot></d3plot> | optional d3plot-file (needed for prog                                                                                                                                                                                                                                                                                                             |
|                      | d3hsp filename if other than "d3hsp" (needed for -title)<br>print contact type (eg: a3, 13, a13)<br>print contact type in keyword (eg: SINGLE_SURFACE) OPYNA-TOOIS<br>print contact timestep if available<br>list all contacts (even without any<br>(usefull with -timestep and -typ)<br>optional d3plot-file (needed for prog<br>default: d3plot |



create Animator session file for displaying nodes via "ide nod xxx" -ani -a4sel create Animator4 session file for displaying nodes via "sel nod xxx" and create Animator4 groups named "id<sid> <warn-type>" -sel <typ> selected warning type (default=all) values for <typ> in tied contacts: tied - all warnings for tied contacts - nodes with separation that are moved sep offset - nodes with separation that are not moved for any reason (OFFset remains but tied connection is applied - dangerous!) far - nodes with separation that are too FAR away (node is untied) - nodes with separation that would shorten connected beams short (node is untied) notfound- nodes that are not found to lie on any master segment (node is untied) rigslav - nodes that are rigid slave nodes (node is untied) rigmast - nodes that are found on master segment with any rigid node (node is untied)

- conflict- nodes that conflict with other tied contact definition (node is untied)
- untied all above warnings with untied nodes

values for <typ> in standard contacts (eq typ13):

typ13 pen mid del below - nodes too far below surface soft2 inter - element-element intersection war \_\_\_\_\_s in soft2 contact (first state) last



| -key     | create LS-DYNA keyword file "check-c.key"        |
|----------|--------------------------------------------------|
|          | with beams of length of the penetrations -       |
|          | can be loaded into LS-Post or Animator3/4        |
| -medina  | create Medina protocol files                     |
| -mnode   | node id for new node creation in Medina protocol |
|          | (default=9.999.999)                              |
| -version | print version                                    |

#### - example:





- Contact surfaces are offset from shell mid-planes and from beam centerlines
   A extremely important to model appropriate gaps between shell and beam parts
- Shooting node logic: At any point during the simulation, if a node is suddenly found to be below the surface (node moves very fast and was not detected before penetration), LS-DYNA just moves the node to the master surface without applying any forces:
  - Advantages:
    - » eliminates manual removal process, thereby, saving user's time and effort
  - Disadvantages:
    - » distorts original geometry at locations, where the penetrations are detected
    - » nodal coordinates after removal process could still penetrate other neighbouring segments and may lead to instability issues
- If shooting node logic is turned off (SNLOG=1), large forces and negative contact energies suddenly appear.



□ Mid-face penetrations (very dangerous) – nodes are released in case of deep penetrations



Numerical example – \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE




□ IGNORE option

- Ignores initial penetrations in the AUTOMATIC contact options. IGNORE=1 allow initial penetrations to exist by tracking the initial penetrations.
- "Initial" in this context refers to the first time step at which a penetration is found
- Shooting node logic has no effect
- Contact forces will resist further penetration
- Contact thickness is adjusted locally and is adjusted again,
  - if penetration node *leaves* the contact region



- This option can be either specified globally in \*CONTROL\_CONTACT or for each interface in \*CONTACT, Optional Card C
- Using IGNORE=2, additional penetration warning messages are printed to the message-files with the original coordinates and the recommended coordinates of each slave node given.



#### **Initial Penetrations**

#### Numerical example – \*CONTACT\_AUTOMATIC\_SINGLE\_SURFACE



- Slave nodes are released for deep penetrations

 A penalty force is not applied until they totally leave once the whole contact area and not only the "contact free zone" around the midplane



#### **Initial Penetrations**



Numerical example "Shell rebounds from plate"

39

B

## Tied contacts

Mode of operation



node of part 1 (slave) is tied to segment of part 2 (master)

- "Normal" tied contact types
  - Slave node is moved to the master segment
  - The isoparametric position of the slave node with respect to its master segment is held fixed using kinematic constraint equations
  - "Constrained\_offset" tied contact types cannot be used with rigid bodies
- Offset" tied contact types
  - Offset between master surface and slave node is permitted
  - Offset tied contacts use a penalty-based formulation and can be used to tie rigid bodies
  - Stiffness of tied contact springs is calculated similar to the penalty-based sliding interface contact types



- Preliminary remarks
  - If a slave node is found close to the master segment (special criteria) the slave node is moved to the master segment
  - □ Initial geometry is slightly altered without invoking any stresses.
  - How close does it have to be:

$$\begin{aligned} d_1 &= 0.6 \left( t^s + t^m \right) \\ d_2 &= 0.05 \min \left( \operatorname{diag}^m \right) \end{aligned} \right\} \quad \rightarrow \begin{cases} \operatorname{shell} : \ d &= \max(d_1, \, d_2) \\ \operatorname{solid} : \ d &= d_2 \end{aligned}$$

- □ If there is a large difference in element areas between the master and the slave side, the distance  $d_2$  may be too large and may cause the unexpected projection of nodes that should not be tied.
- □ To avoid this problem the slave and master thickness can be specified as negative values (SST, MST) in which case  $d = abs(d_1)$ 
  - Recommendation: Use only SST to define an additionally distance,

otherwise oscillations can occur (b7 in comb. with volume elements).





- Tying translational DOF
  - General remarks
    - No rotational DOF are affected, i.e., unrealistic soft behavior for shell elements → should be only used with solid elements
    - Tying similar materials, the master surface should be more coarsely meshed, because the constraints are not applied symmetrically
  - □ Kinematic constraint method:
    - Cannot be used with rigid bodies (use \*CONSTRAINED\_EXTRA\_NODES, OFFSET)
    - Examples: \*CONTACT\_TIED\_NODES\_TO\_SURFACE (type 6)

\*CONTACT\_TIED\_SURFACE\_TO\_SURFACE (type 2)

- Penalty-based method (\_OFFSET):
  - Can be used with rigid bodies
  - Examples: \*CONTACT\_TIED\_SURFACE\_TO\_SURFACE\_OFFSET (type o2)
     → works best if surfaces are very close (no moments are considered)
     \*CONTACT\_TIED\_SURFACE\_TO\_SURFACE\_BEAM\_OFFSET (type b2)
- □ Failure:
  - Extremely important to have the contact segment orientation aligned properly as it determines the tensile and compression direction
  - Example: \*CONTACT\_TIEBREAK\_SURFACE\_TO\_SURFACE (type 9)



- Tying translational and rotational DOF
  - Translational as well as rotational DOF are affected
  - □ Kinematic constraint method:
    - Cannot be used with rigid bodies (use \*CONSTRAINED\_EXTRA\_NODES, OFFSET)
    - Examples: \*CONTACT\_TIED\_SHELL\_EDGE\_TO\_SURFACE (type 7)
       \*CONTACT\_SPOTWELD (type 7)
  - Penalty-based method (\_OFFSET):
    - Can be used with rigid bodies
    - Examples:

\*CONTACT\_TIED\_SHELL\_EDGE\_TO\_SURFACE\_OFFSET (type o7) \*CONTACT\_TIED\_SHELL\_EDGE\_TO\_SURFACE\_BEAM\_OFFSET (type b7)

 Using the {BEAM} and {CONSTRAINED} option, moments resulting from the offset are considered







□ Why are some slave nodes not tied?

 $\square$  After modification: MST = 4.5; SST = 0.001

\*\*\* Warning 40538 (SOL+538)
 Slave node is not constrained
 no segment was found in bucket sort.
 tied interface # = 1
 slave node # = 13

- \*\*\* Warning 40538 (SOL+538)
  Slave node is not constrained
  no segment was found in bucket sort.
  tied interface # = 1
  slave node # = 14
- \*\*\* Warning 40538 (SOL+538)
   Slave node is not constrained
   no segment was found in bucket sort.
   tied interface # = 1
   slave node # = 15
- \*\*\* Warning 40538 (SOL+538)
  Slave node is not constrained
  no segment was found in bucket sort.
  tied interface # = 1
  slave node # = 16
- \*\*\* Warning 40538 (SOL+538)
   Slave node is not constrained
   no segment was found in bucket sort.
   tied interface # = 1
   slave node # = 17
- \*\*\* Warning 40538 (SOL+538)
   Slave node is not constrained
   no segment was found in bucket sort.
   tied interface # = 1
   slave node # = 18

□ How to avoid the warning message "Slave node is not constrained"?
 → use predefined node sets

Numerical example "Tied contacts"



Numerical example "Tied contacts"

CONTACT\_TIED\_SHELL\_EDGE\_TO\_SURFACE\_OFFSET

CONTACT\_TIED\_SHELL\_EDGE\_TO\_SURFACE\_BEAM\_OFFSET



Numerical example "Tied contacts"



## Contact Output

- Resultant forces \*DATABASE\_RCFORC
  - ASCII file containing resultant contact forces for each master and slave side of each contact interface
  - $\hfill\square$  Forces are written in the global coordinate system
  - □ \*CONTACT\_FORCE\_TRANSDUCER\_{PENALTY/CONSTRAINT}
    - Allows the total contact forces applied by all contacts to be picked up
    - Does not produce any contact force
    - Measures contact forces produced by other contact interfaces
    - Generally, only a slave interface is defined
    - Interactions between two surfaces:
      - » Define furthermore a master surface
      - » Only contact forces between slave and master surfaces are kept
      - » Master surface option is only implemented for the PENALTY option and works only with the AUTOMATIC contact types
      - » If contact interface is included in more than one two-surface-force-transducer, define FTALL=1 (\*CONTROL\_CONTACT, CARD 6).



#### **Contact Output**

- Nodal forces \*DATABASE\_NCFORC
  - Reports contact forces of each node in the NCFORC file (ASCII)
  - □ SPR and MPR = 1 on Card 1 in \*CONTACT\_... required
- Global energies \*DATABASE\_GLSTAT

Contact interface energies for all contacts are written to the ASCII file GLSTAT

- Individual energies \*DATABASE\_SLEOUT
  - Contact interface energies for each contact are written to the ASCII output file SLEOUT: Slave-, master-, frictional energy, sum of slave and master

 In cases where there are more than one contact and the global statistics file (GLSTAT) indicates a problem with contact energy, the SLEOUT is useful for isolating which contact interfaces are responsible



- Frictional energy is included in slave and master energy as well
- Sliding energy is the only reasonable quantity to be checked
- Sliding energy (without frictional energy) should be small compared to internal energy
- □ Negative sliding energy as an indicator for a bad model quality → energy is generated



## **Contact Output**

- \*DATABASE\_BINARY\_INTFOR
  - □ Visualize contact interfaces and produce fringe plots of contact stress
    - 1. Including a \*DATABASE\_BINARY\_INTFOR command in the input deck
    - 2. Setting the contact print flags SPR and MPR
    - 3. Including the option "s=filename" on the LS-DYNA execution line
  - FRCENG=1 in \*CONTROL\_CONTACT calculate frictional energy stored as "Surface Energy Density" in the binary INTFOR file



**Contact Output** 



### Summary and Recommendations

- Overview of contact types
  - \*CONTACT\_{}\_NODES\_TO\_SURFACE\_{}
    - one way contact
    - slave nodes are checked for penetration with master segments
  - \*CONTACT\_{}\_SURFACE\_TO\_SURFACE\_{}
    - most often a two way contact
    - slave is checked for penetration with master
    - master is checked for penetration with slave
  - Start YOU analysis USING ONE GLE SURFACE \*CONTACT AUTOMATIC SINGLE SURFACE CONTACT\_{}\_SINGLE\_SURFACE\_{}, \*CONTACT\_{}\_GENERAL
    - two way contact including self contact
  - \*CONTACT\_AUTOMATIC\_{}
    - most automatic contacts work in a similar manner
    - segment based bucket sort
    - thickness considerations
    - release condition similar
  - □ \*CONTACT\_{}\_MORTAR
    - new contact formulation
    - primarily intended for implicit time integration

#### Summary and Recommendations



## Modeling guidelines for full vehicle contact

- Default values are good reference values Use as little contact definitions as possible!
- Global or local contact
  - One global single-surface contact
    - $\rightarrow$  simplicity in preprocessing
    - $\rightarrow$  numerical robustness
    - $\rightarrow$  computational efficiency
  - One global contact, very few special contacts! Definition of local contact interfaces with non-default parameters, for certain areas of the vehicle that require special considerations
- Standard penalty-based or soft constraint stiffness method
  - Soft constraint stiffness method depends on global time step  $\rightarrow$ SOFSCL can be reduced to 0.04-0.07
  - □ If standard penalty-based method is used in a global contact definition, the soft constraint approach can be used locally
- Contact thickness
  - The user is cautioned against setting the contact thickness to an extremely small value as this practice will often cause contact failure
  - $\Box$  For treating contact of very thin shells (<0.5 mm), it may be necessary to increase the contact thickness to prevent contact failure



# Summary and Recommendations

- Definition of slave set
  - □ Several ways to define the slave set for the global contact definition. e.g.:
    - All parts (default)
    - Included parts by \*SET\_PART
    - Excluded parts by \*SET\_PART
- The option to ignore penetrations on the \*CONTROL\_CONTACT keyword (IGNORE=1, IGNORE=2) is recommended (check: Penetration free for SST~0.5 mm, OPPT=0, IGNORE=0)
- Define FTALL=1 (\*CONTACT\_FORCE\_TRANSDUCER, \*CONTROL\_CONTACT)
- When friction is expected to play a significant role, the use of \*DEFINE\_FRICTON to specify friction coefficients on a part-by-part basis is recommended
- Uniform meshes improve result
- Avoid sharp corners
- Make master side with coarser mesh for one way treatment
- Automatic contact input simplifies problem translation
- Contact stiffness affects time step



## **Summary and Recommendations**

## Thank you for your attention!





