

13. LS-DYNA[®] Forum 6 – 8 October 2014, Bamberg, Germany

Particle Methods in LS-DYNA®

<u>N. Karajan</u>¹, J. Wang², Z. Han2, H. Teng², C.T. Wu², W. Hu², Y. Guo², K. Fraser³

¹ DYNAmore GmbH, Stuttgart (Germany)

- ² Livermore Software Technology Corporation, Livermore (USA)
- ³ Predictive Engineering, Portland (USA)

Introduction

Overview on Meshfree Methods in LS-DYNA

2

LS-DYNA Application Range for the Discrete Meshfree Methods

- Granular materials with internal friction
- Solid-like behavior when compacted
 - Static friction law not violated
 - Load carried by grain-to-grain contact
- Fluid-like behavior when in motion
 - Static friction law is violated
 - Motion induced by rolling/slipping
- Typical application for granular media
 - Storage
 - Silos, Piles
 - Transportation
 - Conveyor belts, screws, Pumps
 - Processing
 - Sorting, Mixing, Segregation
 - Filling
 - Hopper/ funnel flow
 - Mine Blast

[The 2005 La Conchita Landslide]

[Wiese Förderelemente GmbH]

The Discrete-Element Method (DEM)

Basic Ideas

- Newtonian mechanics of a set of particles
- Definition of the Contact Between Particles
 - Mechanical penalty contact
 - Discrete-element formulation [Cundall & Strack 1979]
 - Extension to model cohesion using capillary forces
 - Idea of a liquid bridge with fixed volume [Rabinovich et al. 2005]
 - Possible collision states
 - Depends on interaction distance

Filling of dry / wet sand and mud

Robust interaction of particles with deformable / rigid structures

The Corpuscular Method (CPM)

Basic Ideas

- Based on the Kinetic Molecular Equations (Maxwell-Boltzman)
- Reproduces the ideal gas law

 $V_{\rm rms} = \sqrt{\frac{1}{2} \sum v_i^2}$ $V_{\rm rms}^2 = \frac{3 R T}{M}$ where M: Molar mass of the gas

Fluid-Structure Interaction for airbags

Meshless Local Petrov-Galerkin (MLPG)

Idea of Bonds Between Discrete Elements

Automatic definition of heterogeneous bonds: bondform=2

- Based on continuum material models
- Benchmark test: Beam under gravity loading
 - Goal: Reproduce linear-elastic material behavior

Z-displacement [mm]

Fragmentation Analysis with MLPG (bonded particles)

Meshless Local Petrov-Galerkin (MLPG)

Application for heterogeneous bond model

Failure of a reinforced concrete beam under 4-point bending

Possibility to distinguish between reinforcement bars and concrete

Meshless Local Petrov-Galerkin (MLPG)

Smoothed-Particle Hydrodynamics (SPH)

Basic ideas

- Replace the continuum by a set of particles
- Construction of shape functions without a mesh [*Lucy* 1977, *Gingold* & *Monaghan* 1977, *Liu* 2003]
- Integral interpolant as approximation function
 - Exploitation of the identities

$$u(x) = \int_{\Omega} u(y) \,\delta(x - y) \,\mathrm{d}y$$

with:
$$\int_{\Omega} \delta(x - y) \,\mathrm{d}y = 1$$
$$\int_{\Omega} Dirac \text{ delta function } \delta$$
$$\delta(x - y) = 1 \quad \forall \ x = y$$
$$\delta(x - y) = 0 \quad \forall \ x \neq y$$

.

Approximation of the displacement/velocity

$$\begin{split} u_{\alpha}^{h}(\mathbf{x}_{i}) &= \sum_{j} \frac{m_{j}}{\rho_{j}} u_{\alpha}(\mathbf{x}_{j}) W_{ij} \quad \text{with} \quad \mathbf{u}^{h} = u_{\alpha}^{h} \mathbf{e}_{\alpha} \quad \forall \ \alpha = 1, 2, 3 \\ \text{with} \quad W_{ij} &= W_{i}(r_{ij}, h_{i}) = \frac{1}{h_{i}^{3}} \Theta\left(\frac{r_{ij}}{h_{i}}\right) \quad \begin{cases} r_{ij} \ = \ |\mathbf{x}_{i} - \mathbf{x}_{j}| \\ 2h_{i} \ : \ \text{smoothing length} \\ m_{i} \ : \ \text{particle mass} \\ \rho_{i} \ : \ \text{density} \end{cases} \end{split}$$

Approximation of the displacement/velocity gradient

grad
$$\mathbf{u}^{h}(\mathbf{x}_{i}) = \frac{\mathrm{d}u_{\alpha}^{h}(\mathbf{x}_{i})}{\mathrm{d}x_{\beta}} = \sum_{j} \frac{m_{j}}{\rho_{j}} \left[u_{\alpha}(\mathbf{x}_{j}) W_{ij,\beta} - u_{\alpha}(\mathbf{x}_{i}) W_{ji,\beta} \right]$$

with $W_{ij,\beta}(r_{ij}, h_{i}) = \frac{1}{h_{i}^{4}} \frac{\mathrm{d}}{\mathrm{d}x_{\beta}} \Theta\left(\frac{r_{ij}}{h_{i}}\right)$

- Available formulations with/without normalization
 - Standard formulation
 - Symmetric formulation
 - Fluid formulation

Kernel function θ

Collocation method

Kernel approximation of the strong form

Smoothed-Particle Hydrodynamics (SPH)

Major applications for SPH

- High velocity impacts
 - Projectile
 - Material: 304 L Steel
 - □ Velocity: 5530 m/s
 - \Box Geometry: sphere, r = 5 mm
 - Target
 - □ Material: 6061-T651 Al
 - □ Thickness: 2.85 mm

Bird strike

- Major applications for SPH (contd.)
 - Applications with material mixing
 - Here: Friction stir welding
 - Double sided FSW @ 600 RPM, 1200 mm/min
 - Plastic work and friction energy to heat

Courtesy Kirk Fraser (Predictive Engineering)

Smoothed-Particle Hydrodynamics (SPH)

Element-Free Galerkin (EFG) in LS-DYNA

Extension of SPH by integration cells

- Real approximation of the Galerkin weak forms
- Integration cells or background mesh needed to
 - Define the physical domain
 - Contact conditions
 - Impose boundary conditions
 - Perform volume integration via "stress points"

Different descriptions of the EFG Kernel Initial configuration Deformed configuration deformation deformation

- Lagrangean Kernel
 - Support is defined in the initial configuration
 - Support covers the same set of material points throughout time

Eulerian Kernel

- Support is defined in the current configuration
- Support covers different material points throughout time
- Semi-Lagrangean Kernel
 - Support is defined in the current configuration
 - Support covers the same number of material points throughout time

Application to inhomogeneous foam compression

FEM

EFG + Lagrangean Kernel EFG + Semi-Lagrangean Kernel

- Overview on available implementations in LS-DYNA
 - Stabilized formulation (explicit)
 - Lagrangean kernel: Rubber materials, etc.
 - Semi-Lagrangean kernel: Foam materials, etc.
 - Adaptive formulation (explicit & implicit)
 - Large strains in metal materials for manufacturing analysis
 - Strong-discontinuity formulation (explicit)
 - Quasi-brittle material fracture

Major applications for Adaptive EFG

- Severe material deformation in manufacturing problems
 - High accuracy requirement for
 - mapping of internal variables
 - surface representation
 - high gradients
 - Residual stress effects the crash result

global

local

refinement

refinement

- RH-adaptivity for solids (H-adaptivity is limited to shells)
- Failure analysis is limited to metal cutting problems
- Not applicable to rubber-like materials

Implicit Simulation!

- Metal cutting and forging (implicit analysis)
- Local adaptivity to capture sharp corners

- Extrusion processes (implicit analysis)
- Local adaptivity to capture sharp corners

- User testimonials for adaptive EFG
 - Cold forming of a pre-stressed rivet head
 - Computation times
 - LS-DYNA (explicit): 1 day on 6 CPU
 - LS-DYNA (implicit): 20 min on 6 CPU

Element-Free Galerkin (EFG) in LS-DYNA

User testimonials for adaptive EFG

- Cold forming of an automotive part
- Here: deformable tools!

von Mises stress

Element-Free Galerkin (EFG) in LS-DYNA

User testimonials for adaptive EFG

Things to Keep in Mind for Adaptive EFG

- After ever remeshing step
 - Geometry is slightly changed
 - Contact force might be reduced
 - Part of the solution is lost due to variable transfer
- Trigger as few remeshing steps as possible!
- Coarser mesh needs less remeshing!

	Implicit	Explicit
Time step size	independent of deformation	dependent on deformation
Deformation until	background mesh degenerates	time step size drops
Remeshing needed due	to severe deformation	to practical time step size
# of remeshing steps	usually less	usually a lot more
Contact problems cause	convergence problems	shooting nodes

- Mesh size after remeshing
 - As large as the geometry approximation is still acceptable
 - As small as the smallest corner where the material "flows" by

Advanced Multiphysics Coupling

Couple Meshfree Methods with other Features of LS-DYNA

Courtesy Kirk Fraser (Predictive Engineering)

Thank you for your attention!

