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1 Abstract 

In this paper a thin structural metal sheet is researched in regard to crashworthiness as energy 
absorber and a Finite Element model based on the theory of Representative Volume Element is 
generated. Special attention is spend to the global constraining with the LS-DYNA keyword 
*CONSTRAINED_MULTIPLE_GLOBAL. It relates single displacement components of any degree of 

freedom (DoF). Therefore, an academic example is shown and the numerical analysis is explained. 
The example is restricted to the theory of linear Finite Element Method, containing the formulation 
based on the variation of displacements, the weak form of differential equations (which leads to the 
Principle of Virtual Work) and the weighting and shape functions defined by Bubnov-Galerkin. 
Furthermore, the benefit of reducing the system of equations and the speed-up of computation time 
based on the constraining of DoFs is pointed out and demonstrated by the present structural metal 
sheet. In addition, the functionality of a self-written python routine is exemplified, which simplifies the 
procedure of constraining for large three-dimensional problem domains. 

2 Introduction 

In Finite Element (FE) simulations the calculation time increases with the number of degrees of 
freedom (DoFs). Therefore it is aspired to keep the number of DoFs low and the system of equations 
small. For that purpose, one way to minimize the number of DoFs is to take advantage of symmetries. 
However, especially in non-linear crash simulations, this approach is not common because non-
symmetric phenomena like buckling could arise. No such phenomena will occur in the reason of the 
applied structural metal sheet.  
The structural metal sheet (see figure 1) is a three-dimensional metal sheet with small dimension in 
the direction of thickness. Nevertheless, this direction is the characteristic one, which properties has to 
be researched. In this direction the metal sheet offers folding mechanisms, which provide a controlled 
deformation of the macro-structural geometry. The recurring geometry leads to a periodic pattern of 
deformation, which can be used of during the process of FE modelling. In this case, the structural 
metal sheet is researched for energy absorption while crashing in small assembly dimension with 
small FE models using boundary conditions for a Representative Volume Element (RVE). It is realized 

in LS-DYNA by the implementation of the *CONSTRAINED_MULTIPLE_GLOBAL [1] with a self-written 

python routine. 
The field of application of this sheet is restricted to small dimensions in direction of compression and is 
proposed for the protection of components in highly dynamical crash situations.  
Subsequently, a general overview about RVE and FEM is introduced, on which the problem definition 
by means of geometry and load condition is explained. Based on this, the application of the keyword is 
carried out. 

 

Fig.1: Structural metal sheet 
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3 Representative Volume Element 

Structures like foams or fiber reinforced composite materials have complex and micro-structurally 
different material behavior. For simplified simulations and analysis this properties are often smeared in 
a way of continuous approach to an object with homogenous properties. Therefore, a representative 
volume element is necessary, as it is used in multilevel procedures like FE² method [2]. This method 
considers the micro scale in a way that the local properties are determined in an additional rule. The 
micro-structural material can be separated into micro-structure with periodicity and micro-structure with 
stochastically random distribution [3]. First one conforms to the structural metal sheet. The periodicity 
of the geometry is determined by the process of manufacturing. The only difference is the scale. The 
geometry of the metal sheet is not a micro-structure but a macro-structure, which has to be 
characterized. 
Subsequently, the idea of unit cell with periodic boundaries is shown as an equivalent in the field of 
computational fluid dynamics. Next to the difference of Lagrangian mechanics in structural mechanics 
and the Eulerian mechanics in fluid dynamics, the basic mathematics can differ, but the intention of 
reducing the system of equations is the same. In figure 2 is shown a representative volume element of 
an Eulerian system with periodic boundary conditions in the direction of motion. For the structural 
metal sheet the Lagrangian one as the typically point of view for solid mechanics is used. 

 

Fig.2: Unit cell with periodic boundary conditions 

4 System of Equations of Finite Element Method 

For further explanations of globally constrained boundaries the basic FEM is introduced on linear 
static behavior. Therefore, the knowledge of the method of weighted residuals, continuous Galerkin 
method, Bubnov-Galerkin method and discretization is introduced in a nutshell based on Hutton 
(2004) and Hughes (2000). For detailed information about the FEM in its entirety it is referred to the 
corresponding literature.  
The FEM for solving boundary value problems is based on the method of weighted residuals. The 
residual itself in general results from a differential equation. As some complex differential equations 
cannot be solved with an analytical approach for any geometry, the system of equations is 
approximated and the error integrated over the whole domain is zero. Furthermore, the residual is 

weighted by an arbitrary weighting function )(xwi  [4] in one dimension over the domain x  as 

 

b

a

i nidxxRxw ,10)()(  (1) 

The strong form of equations for a three-dimensional problem in linear static structural mechanics is 
given in general as 

 inf ijij 0,  (2) 

igii ongu   (3) 

ihijij onhn   (4) 

with the Cauchy-stress tensor ij , the body force vector if  acting in the domain, the prescribed 

boundary displacements ig  and prescribed boundary tractions ih . Now instead of x  in the three-

dimensional case   presents the problem domain and   is defined as the boundary of the domain 
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 , which is separated in the one with prescribed tractions 
ih  and the one with prescribed 

displacements 
ig . 

While equation (3) has to be fully confirmed in a strong manner, the weighted residual of equation (2) 
and (4) for a displacement based approach results with the Gauss’ divergence theorem applied to the 

term 


dw jiji ,  in the weak formulation as 

 








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

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ih

dhwdfwdw
1

,   (5) 

Equation (5) is also known as the principle of virtual work (PVW). 

The Cauchy stress tensor ij  is related with the constitutive equation to the engineering strains kl by 

klijklij C   . (6) 

Furthermore, the engineering strains are derived from the displacements iu  by )(2/1 ,, ijjiij uu  . 

As the strain tensor is symmetric, it can also be transformed into a vector jiji uL , with ijL  as the 

operator of spatial derivatives. 

After discretizing the displacement field iu , the traction ih  and the virtual displacements iw  with the 

Bubnov-Galerkin method, which means, that the weighting functions are the same as the trial 

functions (index h  represents the discretization) 
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the discretized form can be written in tensor notation as 
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, (8) 

whereas 
T

c can be identified as the vector of virtual displacements. Transforming equation (8) in a 

common way and adding the prescribed displacements to the right hand side, it can be solved and 
assembled to the global system of equations  

0 FDK . (9) 

K  is the global stiffness matrix, D  the global unknown discretized displacements and F  the global 

right hand side vector. The global matrix and vectors represent the whole problem domain, whereas 
the local matrix and vectors are 
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 (10) 

Equation (9), which can also been written as 0int  extFF  has to be solved for D  in every FE 

calculation. The derivation of equation (9) gets more comprehensive for the general Galerkin method 
as well as for dynamic and non-linear calculations. A basic example for the simple case of linear 
statics is shown below for a one-dimensional problem. 
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5 Constrained Multiple Global 

The system of equations of a recurring geometry can be minimized by suitable constraining. The most 
common simplifications are based on expected strains and stresses. Therefore, plane strains, plane 
stresses and axisymmetric stresses can be applied. Furthermore, advantage of symmetry planes can 
be taken. For the structural metal sheet these simplifications are not possible but a RVE can be 
generated and constrained in a proper way as described in the following. 
The subsequent approach is for simplification restricted to the introduction of FE in the previous 
chapter. 

5.1 Basic Idea 

The keyword *CONSTRAINED_MULTIPLE_GLOBAL is available in LS-DYNA since version R7.0.0. It 

relates the degrees of freedom between nodes and corresponding direction’s coordinate. An additional 

multiplication parameter COEFF  scales the related displacements per DoF 
)(NID

DIRu . In the LS-

DYNA Keyword Manual the equation is given by LSTC (2013) as 

 
NID

NID

DIRNIDu 0)( . (11) 

Additionally to the relation between two DoFs these could be referenced to a further DoF of a third 
node. 

In the input file the keyword is used as follows 

*CONSTRAINED_MULTIPLE_GLOBAL 

$#      ID 

       101 

$#     NMP                     

         2(3)                     

$#     NID       DIR      COEF 

         1         1       1.0 

         5         1      -1.0 

  (NodeREF         1       1.0) Reference 

The number of constrained multi points (NMP) has to be adapted dependent on the existence of a 

reference node from two to three. The possibilities of constraining in this keyword are restricted to the 
Cartesian coordinates in x, y and z-direction. Several dependencies are realized by the combination of 
mixing directions and coefficients. Thereby angle dependencies etc. can be defined by the user. A 
basic example with constrained nodes based on the keyword definition above without reference node, 
a concentrated force on node 5 and a mounted node 3 is shown in figure 3a). The example is carried 
out in detail in the following chapter. There are also the results depending on the input parameters 
discussed. 

 

Fig.3: 5 DoFs system with transverse displacements 

1 2 3 4 5 

a) 

b) 

c) 

F 

DIR 
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5.2 Constrained Degree of Freedom in System of Equations 

Next to the geometry and the number of nodes, the DoFs in the global system of equations can be 
minimized with *CONSTRAINED_MULTIPLE_GLOBAL, too. Therefore, the effects of the keyword 

based on the FE-theory are explained subsequently in a simple way building on the FE theory 
explained in chapter 3. For a simple bar system (see figure 3) with DoFs restricted to the transverse 
direction and a single node load on node 5, the global matrix notation for five nodes and 
correspondingly five DoFs is 
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because there is just one direction 1DIR , NID

NIDNID

DIR Duu  )(

1

)(
 follows. The direction index is 

neglected for further proceeding. Using the transformed equation (11) for constraining 1D  and 5D , 

55511 **/ DDD    results. Inserting in equation (12), the system of equations changes to 
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This can be transformed to a smaller system of equations 
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In consideration of the assumption of displacement based elements, the displacement 1D  is 

constrained and has not to be tested by a weighting function. Thus, the first column and the first row 
can be omitted. 
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If the example in figure 3 is applied with an elemental stiffness matrix ijk  as in equation (15) and a 

single nodal force 15 F , the following system of equations (14) and the scaling coefficients 11  , 

12  , 1 has to be solved. Row three and column three can also be neglected, because 

03 D  is already known by the fixed boundary condition (see figure 3a)). The system of equations is 

reduced to 
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which results in 
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The result is shown in figure 3b). The evaluation of 51 DD  is done during the post processing. For 

choosing the scaling parameters as 11  , 12  , figure 3c) ensues. The constrained nodes 1 and 

5 are moving in opposite directions.  

5.3 Application to Structural Metal Sheet 

In a first step the structural metal sheet is investigated with regard to its compression behavior and 
energy absorption. With the intent of defining a homogeneous material characterized by the behavior 
under compression, a unit cell based on the idea of a RVE is modelled. Considering chapter 3, it 
follows as shown in figure 4. The nodes on the front edges of the dark gray elements are the 
constrained boundary nodes, which are related in a manner, that the original metal sheet is 
represented as in figure 1. Thus, the front side and the backside as well as the left and the right side 
are coupled by *CONSTRAINED_MULTIPLE_GLOBAL. 

 

Fig.4: RVE of the structured metal sheet 

In contrast to the previously discussed example in figure 3, it is recommended to constrain either, the 
translational and rotational freedoms of the dark gray elements. To model this behavior, the available 
element formulations are restricted to solid elements, because the rotational DoFs of shells cannot be 
coupled. Next to the contact issue between the single rows of structural metal sheet, this is a reason 
for using solid elements, too. In figure 5 the compressed sample is shown. There, the rotated ends are 
visible. 
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Fig.5: compressed RVE of the structured metal sheet 

5.4 Results of Global Constraining 

To return to the topic of reducing the DoFs, in chapter 5.2 one DoF is eliminated by global 
constraining. For the approach of structural metal sheet 1560 pairs of DoFs are constrained by a total 
number of 46548 DoFs. This means, that by an increasing number of constrained degrees of freedom, 
the size of the system of equations decreases. Thus, the system of equations and also the calculation 
time can be reduced dramatically. The speed-up itself depends on the numerical solver. To check the 
number of DoFs and the size of system of equations to solve, in LS-DYNA the optional card 
*CONTROL_IMPLICIT_SOLVER for implicit solving brings some more information about the system of 

equations. The LPRINT can be added for additional output about statistics on model-oriented memory 
and cpu requirements [1]. Furthermore, with MTXDMP the system matrix and vectors as in equation 
(9) are written in an output file [1]. 

6 Python Routine for Automatic Constraining 

For models with a huge number of nodes and DoFs, there is a lot of manual constraining because the 
LS-PrePost does not support the constraining of *CONSTRAINED_MULTIPLE_GLOBAL in a proper 

way. In order to create the input file with the corresponding keyword every node and its constrained 
node has to be related. There is no possibility of picking elements by surfaces or any other geometry. 
The remedy is an automatic constraining based on geometrical parameters of the FE model. 
Therefore, a Python routine was programed, which reads in the nodes and elements from the .k-file, 
generates the constrained node pairs and additionally writes out a LS-DYNA input file. For applying 
the routine in a proper manner, the FE model has to be prepared. The routine constrains nodes, which 
are part of different surfaces. In addition for the treated model, the nodes are constrained by their 
accordance of Cartesian coordinates in two dimensions. In which manner (means direction and 
coefficients) the surfaces or nodes are constrained is defined by input parameters through the 
command line. An additional user defined deviation parameter respects numerical deviations in 
direction of coordinates. To speed up the constraining by the routine, the number of nodes in a 
constrained partID has to be reduced. 
A small example is shown in figure 6. The cube consists of five parts: the gray one in the middle is not 
used for constraining. The two light gray parts contain the nodes, which have to be constrained. These 
nodes are also part of the dark gray top and bottom shells. The input for the command line comprises 
the partIDs, which have to be constrained. In this case, the nodes of the dark gray shells are 
constrained. The light gray solids are not used for this example, but they can replace the shell 
elements. Additionally, the direction of constraining has to be entered, which is for an overall 
constraining 1,2,3 for x-,y- and z-direction. Thereupon, the routine checks all nodes of the input 
partIDs considering a deviation defined by the user. The deviation can be based on the geometry or 
numerical deviations of coordinates. 
Obviously this routine is restricted to special geometries and meshes, but the self-written routine is 
highly adoptable, because of the module based scripting. 
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Fig.6: Constraining with Python Routine 

7 Summary 

A structural metal sheet is investigated regarding energy absorption under impact loading. For getting 
information about the behavior, a unit cell model based on the idea of a RVE is modelled. This serves 
as the basis for a homogeneous material model, which could be developed in the future. The 
modelling of the RVE is provided by the recurring geometry and pattern of deforming while 
compression. Thus, the whole metal sheet can be reduced to a smaller model and globally 
constrained DoFs. This is realized by the new keyword *CONSTRAINED_MULTIPLE_GLOBAL. Based 

on the FE theory some restrictions are set for further proceeding. The restrictions for a small one-
dimensional example are the displacement based approach, a continuous Galerkin method, especially 
the Bubnov-Galerkin method with equivalent shape and weighting functions and the simplification of 
linear statics. For the dynamically computed structural metal sheet, these restrictions are not 
applicable, but the basic idea of globally constraining of the system equations is equal. Since the 
elements are based on a continuous Galerkin method, this procedure would have to be the same. 
Next to the theory, the keyword is applied to the structural metal sheet and the advantage of 
eliminating DoFs is shown. It results in a smaller system of equations and a decreasing computation 
time. Additionally, for a fast and efficient constraining a python script is written, which generates a .k-
file for input in LS-DYNA. The algorithm utilizes the details about the recurring geometry of the treated 
metal sheet. For that reason, the routine does not satisfy on any geometry, problem domain and 
mesh, but the algorithm can be modified in regard to the special problem. 
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