

## LS-OPT®: Status and Outlook

Nielen Stander, Anirban Basudhar, Imtiaz Gandikota

LSTC, Livermore, CA

Katharina Witowski

DYNAmore AG, Stuttgart

Åke Svedin, Christoffer Belestam

DYNAmore Nordic, Linköping

LS-DYNA Users Forum, Bamberg, Germany October 7, 2014

## Contents

- Overview
- ♦ Enhancements in 5.1
- Outlook

#### LS-OPT: Brief overview

- Optimization
  - Direct and Metamodel-based
- Reliability and Robustness (RBDO)
- Process Optimization
- Multiple solvers,pre-, post-processors
- Network-based
  - Job scheduling
  - Monitoring
  - Control



Parameter Identification (Materials, Systems)

# LS-OPT Methodology

# Metamodel-based Optimization/Reliability

Discrete-Continuous problems (Sizing/Shape)



- Benefits derived from metamodels
  - Build a global model of the design for graphical exploration
  - Stochastic methods inexpensively applied
    - Reliability and Robustness Analysis/Optimization
    - Global Sensitivity Analysis
    - Outlier Analysis
    - Tolerance Optimization

# Direct Optimization

- Global Optimization
- Integer (category, material), Discrete-Continuous, Multi-Objective

# Vehicle Crash Example: MDO Model detail

6 Crash Modes + Body Dynamics Mode:

- approximately 3 million element models



Allen Sheldon, Ed Helwig (Honda R&D)





# Vehicle Crash Example: Design Formulation

35 Continuous Thickness Variables: 33% of BIW mass



#### **Objective:**

Minimize Mass

#### **Constraints**:

Front NCAP:

**Decelerations** 

**Intrusions** 

Front Offset:

**Intrusions** 

**Cabin Integrity** 

SICE:

**Intrusions** 

Side Pole

**Intrusions** 

Roof Crush:

Force

Rear ODB

**Intrusions** 

Fuel System Clearance

NVH:

**Body Stiffness** 

**Body Frequency** 

Allen Sheldon, Ed Helwig (Honda R&D)

# Vehicle Crash Example: Setup and results

#### **LS-OPT SRSM Settings:**

- Optimization Strategy
   SRSM (Domain Reduction)
- •Metamodel
  Radial Basis Function Network
  (global)
- Point Selection
   Adaptive Space Filling
   54 points per iteration



Allen Sheldon, Ed Helwig (Honda R&D)



- Optimization was <u>aggressive</u> with a significant initial mass reduction.
- Then optimization <u>converges</u> as constraints are satisfied.
- Final step shows some increase in mass as variables are switched to discrete values.
- · Gauge changes are non-intuitive.
- Some parts have significant gauge up values.
- Rear portion of structure saw significant gauge down.

# Example: Calibration of material 125



# New Features

## Multi-level Optimization



#### **OUTER**

- Subdivision of problem into levels
- Nesting the optimization problem
- Variables and responses are transferred between levels
- Inner level optimization is done for each outer level sample







# Multi-level Optimization: Why?

- Organization. Easier to organize the problem as a collection of subsystems
- Efficiency. Solution algorithm takes advantage of the subproblem type
  - Can match optimization methods with variable types, e.g. materials (categorical), sizing/shape (continuous).
- Robustness and accuracy. Smaller sub-problems are typically solved in a relatively low-dimensional space
- Critical framework for rational decomposition methods: <u>Analytical Target Cascading</u>
  - Iterative method which resolves inconsistencies between individual processes with shared variables

# Multi-level Optimization: Applications

# Applications:

- System Optimization (component sublevels)
- Design of Product families
- Tolerance optimization
  - (Basudhar, A. and Stander, N. Tolerance Optimization using LS-OPT, Proceedings of the LS-DYNA Forum, Bamberg, October, 2014)
- Robust design using Random Fields
  - (Craig, K.-J. and Stander, N. Optimization of shell buckling incorporating Karhunen-Loève-based geometrical imperfections, Structural and Multidisciplinary Optimization, 2008, 37:185:194)
- Integrated Design and Materials Engineering (e.g. ICME project)
  - Engineer materials at various levels
  - Integrate materials with Forming design

# Multi-level Optimization: Example -- Truck



# Multi-level Optimization: Example

#### Outer level: Continuous





#### Inner level: Discrete/Categorical



Variable setup

Material
categories

thickness transfer

Parameter Setup Stage Matrix Sampling Matrix Resources Features ☐ Show advanced options Edit Input Parameter References Type Starting Minimum Maximum Delete String ✓ mat BF String ✓ mat IR String ∨ mat OF String ✓ mat\_bot mat bot c String ✓ mat\_bump Values: mat bump b, mat.. String 3.137 Transfer Variable 3.137 2.997 2.997 3.4 3.4 1.262 1.99

# Multi-level Optimization Categorical variables: Material levels



# Multi-level Optimization: Design Criteria

#### **Variables**

- Outer level: 6 thickness variables of main crash members
- Inner level: 4 material types (levels) for 6 main crash members

#### Minimize

Mass

#### Criteria

```
◆ Intrusion < 721
```

◆ Stage 1 pulse < 7.5g

◆ Stage 2 pulse < 20.2g</li>

◆ Stage 3 pulse < 24.5g</li>

# Multi-level Optimization: SRSM/GA vs. GA only

|                                                                                      | Mass (Kg) Cost                                            |          |         |               |                   |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|---------|---------------|-------------------|
| Analysis Type                                                                        | No. of DVs                                                | Baseline | Optimum | Reduction (%) | (LS-DYNA<br>runs) |
| Multilevel Optimization with thickness and discrete material variables               | 6 (thickness) + 6 part materials (4 discrete levels) = 12 | 138.1    | 122.2   | 11.6          | 9340              |
| Direct optimization with both thickness and material variables (population size: 30) | 6 (thickness) + 6 part materials (4 discrete levels) = 12 | 138.1    | 130.5   | 5.5           | 3000              |
| Direct GA with thickness and discrete material variables (population size: 100)      | 6 (thickness) + 6 part materials (4 discrete levels) = 12 | 138.1    | 121.9   | 11.8          | 5000              |

# Multilevel Optimization: Observations

- Multilevel more robust (possibly).
  - GA population size can significantly influence global optimality
- Multilevel allows metamodel creation for continuous variables
  - E.g. can apply robustness, tolerance optimization etc.
- Disadvantage: Multilevel more expensive.
  - Optimization could be streamlined, e.g. by adapting starting points for sublevel optimization. Hybridization of optimizer.
- Multilevel useful in other applications such as tolerance optimization: Tolerance Optimization Using LS-OPT (Basudhar). Proceedings of this forum
  - Also, Collaborative Design Optimization, Design of Product Families

# Variable deactivation (iterative methods)

- Optimization: large number of function evaluations, especially in multi-level setup
- Variables can be manually de-activated
  - Save computational effort (variable screening)



Multiple entity plot

#### Parallel Neural Networks: Motivation

- High metamodel accuracy required. Even with screening, appropriate metamodeling tools needed
- Feedforward Neural Networks
  - High accuracy global approximation. Good bias-variance compromise. Variance information available (illustrated below)
  - ◆ Expensive. Vehicle crash often 100+ responses. Solved independently due to nonlinearity. Reduction (as when linear) not possible.
    - Ensembles (sorting through hidden nodes to get the right order)
      - Committees (Monte Carlo method to improve prediction)
  - Ensembles and Committees are suitable for parallelization





### Parallel Neural Networks: Interface



## Parallel Neural Networks: Results





Predicted vs. Computed

#### Calculation times

| Type    | Order      | MC         | Time (min.) |
|---------|------------|------------|-------------|
| Min     | 3          | 9          | 2.8         |
| Default | <i>5</i> * | <b>9</b> * | 10.6        |
| Max     | 10         | 19         | 99.6        |

#### **Statistics**

| <b>Parameters</b> | 9    |  |
|-------------------|------|--|
| Simulations       | 1997 |  |
| Responses         | 15   |  |
| Processors        | 8    |  |

# Excel stage type (substitution)



# Excel stage type (extraction)



# Third Party solvers: Example

Courtesy: Aboozar Mapar, MSU



1 🗊

1 🗊

<u>Ф</u>ок

0

0

Variable setup

0.01

0.2

Continuous

Continuous

Add.

# Third Party solvers: Example

Courtesy: Aboozar Mapar, MSU



1 🗊

1 🗊

<u>Ф</u>ок

0

0

Variable setup

0.01

0.2

Continuous

Continuous

Add.

# Graphical Features (Viewer)

# **Design Point Categories**

Picking, displaying and saving designs of interest



Variable "t1" vs. Variable "t10" vs. Response "N1\_disp ▲ Group\_B ◆ Group\_C ◆ Group\_D

# Histogram visualization

- Manual axis control of the region of interest
  - Range, step size
- Graphical visualization of properties (mean, std dev, feasibility range)
- Additional histogram types

  - Probability Density Function (PDF)
     / Relative Frequency per Unit Width = Bin width

(standard representation)

# Histogram visualization – attributes



# Global Sensitivity Analysis (subregion)

- Sensitivities within specific design proximity
- Can set up multiple sub-regions interactively



# Response-variables (development version)

- Transfer variables between design stages
- Responses are substituted in successor stage input



## Multi-level Optimization

- Funded by US Department of Energy
- Analytical Target Cascading as a logical development path to provide a <u>collaborative capability</u>
- Viewer (post-processing, data mining)
  - Result table manipulation: integration of categories into tables, etc.
  - Speed improvements to Viewer displays
  - Virtual design displays: generate cluster of surrogate results

## Reliability

- Probability Density Function approximation from empirical data
  - Kernel density approximation
- Sequential reliability analysis
  - Convergence of probability of failure value
  - Adaptive sampling
- ◆ Tolerance-based optimization See paper by *Anirban Basudhar*

## New applications for approximations

- Domain reduction approaches for multi-objective optimization (MOO)
  - Extend work done for User's Conference 2012
  - Classification-based Decision Boundaries
    - Support Vector Machines
    - Application in domain definition for binary and discontinuous responses
- Multi-response metamodels
  - Spatial distribution of response locations
  - Biomechanical applications, e.g. using MRI spatial data for heart muscle calibration

## Metamodels: performance and usability

Multiple metamodel type displays: comparison of metamodels

#### Job scheduler

- ◆ LS-OPT job scheduler handles/monitors ~330 jobs in parallel (Linux limitation).
- With MPP (e.g. 64 nodes/job) ~ 21,000 but capacity is now typically ~20,000 nodes

## More solver types

- Matlab
- ◆ LS-TaSC

# Other papers at this conference

Tolerance Optimization Using LS-OPT (Basudhar)



LS-OPT Current development: A perspective on multilevel optimization, MOO and classification methods (Stander, Basudhar) (Developers Forum, Sweden)