

here

Automatic Model Reduction by Exploitation of Knowledge from Pre-existing Simulations in studiena

Daniel Weigert¹, Fabian Duddeck¹, Harald Schluder²

¹Technische Universität München, Germany ²AUDI AG, Ingolstadt, Germany

Outline

- 1. Motivation for Model Reduction in Crashworthiness Analysis
- 2. Sub-Structuring Approach
- 3. Knowledge-Based Sub-Structuring Approach
- 4. Application Example
- 5. Conclusions & Outlook

Motivation for Model Reduction Methods in Crash Simulation

State-of-the-art in Industrial Application

Motivation for Model Reduction Methods in Crash Simulation

Why running all simulations on full vehicle models? Use pre-exisiting / gained results to speed up simulations.

Knowledge-Based Model Reduction

Sub-Structuring Approach for Model Reduction

Model reduction:

Computational reduction of original simulation models to a sub-model by applying kinematic conditions (KC's) to the interface nodes.

Knowledge-Based Sub-Structuring Approach

Knowledge-Based Sub-Structuring: Kinematic conditions for new variants are predicted on pre-exisiting knowledge.

Achievable Accuracy by Using the Sub-Structuring Approach

Application Example

2010 NCAC Toyota Yaris full scale model Full frontal crash configuration 974,561 elements

Surrogate Models for Selected Interface Nodes

Results for Low-Speed on Reduced Model at 14.9 km/h

2 full simulations for surrogate models used at **10.5 km/h** and **16.5 km/h**

Very good agreements

Reduced model built up for v=14.9 km/h

5 ms output with 50 interpolation points used

		Number of elements	Computation time [s]
Low-speed	Full scale model	974.561	67.857
	Reduced model	260.378	17.512 + 1.344*
Reduction		73.3 %	72.2 %

* Time for creation of reduced model

Technische Universität München

Results for High-Speed on Reduced Model at 54.9 km/h

Nodal 3D scatter [mm]

30 ms

50 ms

70 ms

5 full simulations for surrogate models used at **51.0 km/h, 52.9 km/h, 56.9 km/h, 59.1 km/h** and **61.8 km/h**

51 53 57 59 61

Reduced model built up for **v=54.9 km/h** 5 ms output with 50 interpolation points used Satisfying agreements

Results for High-Speed on Reduced Model at 54.9 km/h

Conclusions & Outlook

Conclusions

- Sub-structuring technique can be used as a suitable technique for model reduction in crash
- Estimation of interface conditions by use of surrogate models
- Very good acurracy for low-speed crash / satisfying accuracy for high-speed at the moment
- Knowledge-based identification of suitable interface position needed

Outlook

- Use of surrogate models also for non-parametric design changes
- Improvement of surrogate models by the use of further pre-exisiting results
- Data-Mining on pre-existing simulation results in SDM systems
- Error analysis at the interfaces needed to judge on correctness of selected interface position

2

here.

Thank you for your attention

LS-DYNAForum, Bamberg, October 7, 2014

D. Weigert M.Sc.

I'm stud

16