Recent Developments in LS-DYNA

LS-DYNA User Forum September 25, 2013

Introduction

LS-DYNA Application Areas					
Development costs are sp	pread across many industries				
Automotive Crash and safety NVH Durability Aerospace Bird strike Containment Crash	Structural Earthquake safety Concrete structures Homeland security Electronics Drop analysis Package analysis Thermal				
Manufacturing Stamping Forging Consumer Products	Defense Weapons design Blast response Penetration Underwater Shock Analysis				

One Code for Multiple Solutions

Many Results Manufacturing, Durability, NVH, Crash

Ongoing Developments

Ongoing Developments

- 1) SPH
- 2) Discrete Element Method (DEM)
- 3) LS-PrePost
- 4) Coupled Multi-physics Solvers

SPH Thermal Solver

- An explicit thermal conduction solver is implemented for SPH analysis.
- Following keywords and materials are supported:

*INITIAL_TEMPERATURE_OPTION *BOUNDARY_TEMPERATURE_OPTION *BOUNDARY_FLUX_OPTION *MAT_THERMAL_ISOTROPIC *MAT_ADD_THERMAL_EXPANSION *MAT_VISCOELASTIC_THERMAL *MAT_ELASTIC_VISCOPLASTIC_THERMAL *MAT_ELASTIC_PLASTIC_THERMAL

Metal Cutting with Heat

LS-OVNA user input Texe = 0

Heat source: *BOUNDARY_FLUX *MAT_JOHNSON_COOK (stress flow depends on the temperature)

Friction Stir Welding with SPH

FSW (SPH) Tene - 0

Tools: Rigid body

Working pieces: Johnson_cook material with viscoplasticity. heat capacity=875 thermal conductivity=175

EQHEAT=1.0. FWORK=1.0 for heat source

ADD_THERMAL_EXPANSION applied for the working pieces

Courtesy Kirk A. Fraser at ROCHE

Discrete Element Sphere (DES)

*DEFINE_DE_INJECTION

*DEFINE_DE_TO_SURFACE_COUPLING

- Source of DES
 - Generate traction force to simulate conveyor belt

Discrete Element Sphere (DES)

*DEFINE_DE_TO_BEAM_COUPLING

DEM– Funnel Flow

Variation of the parameters

Courtesy of Dr.-Ing. Nils Karajan, Dynamore GmbH

DES Bond Model

Extending into Continuum Mechanics

- All particles are linked to their neighboring particles through Bonds.
- The properties of the bonds represent the complete mechanical behavior of Solid Mechanics.
- The bonds are independent from the DES model.
- They are calculated from Bulk Modulus and Shear Modulus of materials.

DES Bond Model - Mechanical Behaviors

- Every bond is subjected to:
 - Stretching
 - Shearing
 - Bending
 - Twisting
- The breakage of a bond results in Micro-Damage which is controlled by the critical fracture energy value J_{IC}.

DES Bond Model

Verification Test of Quasi-Static Loading

- Two Inclined Cracks Under Slow Quasi-Static Loading
- A pre-cracked rectangular plate
 - Size: 100mm x 40mm
 - crack length: 14.1mm
- Material Properties
 - Density: 2,235 kg/m³
 - Young's modulus: 65 GPa
 - Poisson ratio: 0.2
 - Critical Fracture Value: 204 J/m²

Quasi-Static Loading

Propagation of Two Inclined Cracks Under Quasi-Static Loading

R=0.125 Total Strain Energy in each elements

LS-DYNA Multi-Physics Solvers

	ALE	SPH	DES	PGas	
ALE				NA	available in R7.0
SPH				NA	in house testing
DES				•	-
Pgas					

*ALE_COUPLING_NODAL
*DEFINE_SPH_TO_SPH_COUPLING
*DEFINE_SPH_DE_COUPLING
*PARTICLE BLAST

LS-DYNA Multi-Physics Solvers

*ALE_COUPLING_NODAL

- · Modeling explosion driven sands hitting on a plate
- · Penalty method is under development

LS-DYNA Multi-Physics Solvers

*DEFINE_SPH_TO_SPH_COUPLING *DEFINE_SPH_DE_COUPLING

• Penalty based SPH to SPH/DE particle contact

LS-DYNA Multi-Physics Solvers

*PARTICLE_BLAST

Fast Rendering in version 4.0/4.1

- Fast rendering is the default rendering mode for versions 4.0/4.1.
- If graphics hardware is not capable, "Normal Rendering" will be used automatically.
- To switch between "Fast rendering" and "Normal rendering" mode, enter ctrl-L twice before loading the data.
- Rendering mode will be memorized and recorded in the configuration file.
- For certain hardware and model size, fast render mode can result in 10x to 15x speed up.

D3HSP file viewing

Purpose: To look at the content of d3hsp file in an organized way

- d3hsp file contains a lot of information for the LS-DYNA run.
- LS-PrePost reads the information from this file and organizes them into a tree/list structure for easy reading.
- Key phase search is possible.
- Launch d3hsp view in misc pull-down menu.
- Only available in version 4.0 and later.

Cutting Plane for CPM (Particle) S-PrePost 4.1 (Seta) - 12Feb2015(09:00)-64bit C1posttesticp - - -• A special new cutting plane dilipdemo7 (UNIT: kg-m Fime = 10.002 aggaggggg interfaces has been developed for SPH, CPM (particle), DES, and CFD analyses. Multiple planes can be . defined and visualized. ID Lag Norm2 ight Multiple planes definitions 4 Trace 🕹 🏟 🜍 🌚 🏟 🏵 🖓 🖸 🖸 🖸 🛅 pall -Click this icon to activate the plane interface

Scripting Command Language

- Scripting Command Language (SCL) is a C-like programming language to be executed within LS-PrePost.
- Executes LS-PrePost commands.
- Allows "if then else", for, and while loop operations.
- Provides API (Application Programming Interface) to extract model and result data from LS-PrePost Data base.
- Operations can be done on extracted data to form new data. New data can be output to file or fringed on screen.
- Most suitable to perform same operations over different part of the model.
- Documentation and tutorial for Scripting Command Language will be available on LSTC ftp site soon.

Scripting Command Language

- To download the document on Scripting Command Language, go to the following directory:
 - <u>ftp://ftp.lstc.com/outgoing/lsprepost/SCLexamples</u>
- Lsppscripting.doc describes how to use Scripting Command Language.
- SCL_Examples.zip file contains examples scripts which demonstrate different operations.

Model Compare for Post-Processing

- Read in 2 sets of d3plot files
- Model should be similar
- Go to Post->MSelect, and select 1st and 2nd model for comparison
- Click "Compare" and wait for the data processing (will take time depends on model size)
- Select State (time) for both models and then click "Update"
- Compare will show different data in the following categories:
 - Summary
 - Global
 - Displacement
 - Stress
 - Strain

Model Compare for Post-Processing

- Summary basic model information
- Global global energy results
- Displacement the 3 global min/max values of displacement with node IDs
- Stress the six global min/max stress values with element IDs
- Strain the six global min/max strain values with element IDs

Model-1 Model-1 Max time 0.149100 0.149100 No. of states 17 16 Total No. of nodes 157806 157806 Total No. of parts 50 50	2	
No. of states 17 16 Total No. of nodes 167806 167806 Total No. of parts 50 50		
Total No. of nodes 167806 167805 Total No. of parts 50 50		
Total No. of parts 50 50		
Total Nor of parts		
No. of beam parts 0 0		
No. of shell parts 50 50		
No. of solid parts 0 0		
No. of tshell parts 0 0		
No. of sph parts 0 0		
No. of beam elems 0 0		
No. of shell elems 167447 167447		
No. of solid elems 0 0		
No. of tshell elems 0 0		
No. of sph elems 0 0	-	
Extent maxx 151338.843750 169022.4063	250	
Extent miny -193675.000000 -193675.000	000	
Extent maxy 219075.000000 219075.0000	000	
Extent minz -86000.00000 -86000.0000	00	
Extent maxz 142600.000000 142600.0000	000	
Deleted elems 0 0		
No. global variables 356 356		
Nv2d 0 0		

Summary Global Displace	ment Stress Strain	Misc				
Model-1(Value) Model-1(Part) Model-1(Item) Model-2(Value) Model-2(Part) Model-2(Item)						
x-displacement min	2002.7	1	N66162	19696.3	1	N157713
x-displacement max	2519.2	1	N72301	24408.1	1	N72301
y-displacement min	-298.821	1	N98280	-868.625	1	N39071
y-displacement max	115.359	1	N72296	989.434	1	N11957
z-displacement min	-349.383	1	N63693	-872.531	1	N70856
z-displacement max	327	1	N95485	1925.96	1	N32235

Displacement values comparison table

Summary Global Displacement	nt Stress	Strain	Misc				
	Model-1	(Value)	Model-1(Part)	Model-1(Item)	Model-2(Value)	Model-2(Part)	Model-2(Item)
x-stress min	-4.88605e	+011	44	S97584	-5.07636e+011	32	S70473
x-stress max	5.26891e+	+011	32	S70359	4.61351e+011	8	S16143
y-stress min	-3.85562e	+011	29	S70844	-6.62668e+011	13	S36069
y-stress max	6.37134e+	+011	32	S70353	6.657e+011	9	S25514
z-stress min	-5.14827e	+011	29	S70906	-6.65736e+011	9	S27028
z-stress max	5.20831e+	+011	29	S70937	6.87303e+011	13	S36064
xy-stress min	-3.35629e	+011	32	S70352	-2.26296e+011	32	S70358
xy-stress max	3.2788e+0	011	32	S70359	2.87103e+011	12	S25308
yz-stress min	-2.497e+0	11	41	S97952	-3.21899e+011	9	S25547
yz-stress max	2.93272e+	+011	29	S72085	3.1249e+011	13	S36066
zx-stress min	-3.22076e	+011	29	S71899	-2.27891e+011	41	S99099
zx-stress max	3.01729e+	+011	41	S98076	2.63092e+011	5	S16722
von mises stress min	0		51	S108433	0	51	S108433
von mises stress max	6e+011		32	S70353	6e+011	13	S34548

Stress values comparison table

ISO-Geometry Element

- Create *ELEMENT_NURB data from IGES or STEP geometry data.
- Read iso-geometry element (*ELEMENT_NURB) data.
- Read igaplot file for post-processing, igaplot is created by LS-DYNA when isogeometry element is presented in the keyword data.
- Current version of LS-DYNA create both igaplot file along with interpolated mesh for the NURBS element, the interpolated mesh is stored in the regular d3plot file.
- Fringe data can only be processed with the interpolated mesh for now. In the future, d3plot will not contain the interpolated mesh, LS-PrePost will fringe stress/strain data on the isogeometry element directly.

ISO-Geometry Element

• To Create iso-geometry element, go to Mesh->Nurbs->Create,

• Current development on capability to modify the isogemetry element within LS-PrePost. Allows user to refine the number of patches and modify the control points.

ISO-Geometry Element

• The keyword data of iso-geometry element

 Bit LS-DVNA Keyword file created by LS-PrePost 4.1 (Beta) - 12Apr2013(23:00)

 SH Greated on Apr-21-2013 (00:35:25)

 *KEYWORD

 *KEYWORD

 *ELLENT_SHELL_NURS_PATCH

 SH opeid
 pid

 pid
 pr

 SE opeid
 pid

 *ELETS
 set opeid
 int niss \$# wf1 forn Ø nisr imass 9 0 6 rk7 3.104522 sk7 0.000 n7 0 0 w7
 rk3
 rk4
 rk5

 # .000
 0.000
 1.552261
 1.552261

 \$# .5k1
 sk2
 sk3
 sk5

 8.000
 0.000
 1.000000
 1.000000
 0.000

 \$# .000
 0.000
 1.000000
 1.000000
 0.000

 \$# .01
 2
 3
 4
 5

 \$# .01
 2
 3
 4
 5

 \$# .000000
 0.713630
 1.000000
 0.713630
 1.000000

 1.0000000
 0.713630
 1.000000
 0.713630
 1.000000

 \$MDDE
 \$M .02
 X
 X
 X
 rk8 3.104522 sk8 0.000 n8 0 0 \$# rk2 rk3 rka rk5 rki 22 rkő 3.104522 skő 0.000 nő 0 ω8 0.000 0.000 wó 0.000 0.000 0.000 0.000 y -0.037062 -1.018022 -0.999828 -0.981634 rc 8 8 8 x -0.999313 -0.962931 0.018534 1.000000 2 0.000 0.000 0.000 0.000 0 0 0 0 2 3 5

Frequency Domain Features

- BEM acoustics
- FEM acoustics
- Frequency response function
- Random vibration (fatigue)
- Response spectrum analysis
- Steady state dynamics

Application

- NVH of automotive and airplane
- Acoustic design and analysis
- Defense industry
- Fatigue of machine and engine
- Civil Engineering, Earthquake Engineering

Car Body NVH

FRF formulations

FRF	Input	Output
Accelerance	Force	Acceleration
Effective Mass	Acceleration	Force
Mobility	Force	Velocity
Impedance	Velocity	Force
Dynamic Compliance	Force	Displacement
Dynamic Stiffness	Displacement	Force

Random Vibration

A cluster server is analyzed by LS-DYNA to understand the location of vibration damage under standard random vibration condition.

Input PSD					
GRMS=1.63 g^2/Hz					
Hz	g^2/Hz				
10	0.001				
20	0.003				
40	0.003				
80	0.02				
120	0.02				
200	0.0015				
500	0.0015				

It is found that the 3σ Von-Mises stress is less than the yield stress of the material (176 MPa).

Maximum values

	1σ	3σ
S _{v-m} (MPa)	41.2	123.6

Initial Damage in Random Fatigue

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

Card1	1	2	3	4	5	6	7	8
Variable	MDMIN	MDMAX	FNMIM	FNMAX	RESTRT	MFTG	RESTRM	INFTG
Туре	Ι	Ι	F	F	I	Ι	Ι	Ι
Default	1		0.0		0	0	0	0

Define Card 7 if option FATIGUE is used and INFTG=1.

Card7	1	2	3	4	5	6	7	8
-------	---	---	---	---	---	---	---	---

Variable	FILENAME
Туре	С
Default	d3ftg

Path and name of existing binary database (by default, D3FTG) for

VARIABLE INFTG DESCRIPTION

Flag for including initial damage ratio.

initial damage ratio.

EQ.0: no initial damage ratio, EQ.1: read existing d3ftg file to get initial damage ratio.

FILENAME

Response Spectrum

Acoustic Transfer Vector

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ATV

- Acoustic Transfer Vector is obtained by including the option **ATV** in the keyword.
- It calculates acoustic pressure (and sound pressure level) at field points due to unit normal velocity of each surface node.
- ATV is dependent on structure model, properties of acoustic fluid as well as location of field points.
- ATV is useful if the same structure needs to be studied under multiple load cases.

Need to be computed only once Change from case to case

	1	0	0
Г	Restart options:		

RESTRI

EQ.3: LS-DYNA reads in user provided velocity history, saved in ASCII file "bevel".

Acoustics: Boundary_Acoustic_Mapping

*BOUNDARY_ACOUSTIC_MAPPING

Purpose: Define a set of elements or segments on structure for mapping structural nodal velocity to boundary of acoustic volume.

Card	1	2	3	4	5	6	7	8
Variable	SSID	STYP						
Туре	Ι	Ι						
Default	none	0						

VARIABLE

DESCRIPTION

Set or part ID SSID

STYP

Set type: EQ.0: part set ID, see *SET_PART,

EQ.0: part set ID, see *SE1_PAR1, EQ.1: part ID, see *PART, EQ.2: segment set ID, see *SET_SEGMENT.

FEM Acoustics: Post Processing

Incompressible ICFD solver (*ICFD)

- A solver for problems that involve incompressible flows
- It is coupled to other features of LS-Dyna for multiphysics analysis
- Highly scalable in MPP
- Large database of validations problems
- Steady growth

- Free Surface Flow
- External/Internal Aerodynamics
- Conjugate heat transfer
- Conjugate heat transfer + Electromagnetism
- Fluid Structure interaction

Examples of application

Free Surface flow: Impact force calculation

Free Surface flow: Mold filling simulation

Examples of application

External Aerodynamics: Drag prediction for ground vehicles

Conjugate Heat Transfer: Stamping

Examples of application

Conjugate Heat Transfer: Coupled to Electromagnetism for cooling

Courtesy of: Miro from the Institute for composite in Kaiserslautern

Fluid Structure Interaction

- Shell solid elements
- Implicit solid mechanics
- Strong FSI coupling

Courtesy of: Hossein Mohammadi, Mcgill University

Examples of application

Fluid Structure Interaction: Torque and tip displacement

- Verification of conjugate heat transfer problems using analytical solutions.
- New turbulent inflow and new turbulence model WALE.
- Improved performance and scalability.
- Numerous new LSPP tools.
- Export CFD output in *vtk* format.
- Non-Newtonian flow.

New Developments

- Verification of conjugate heat transfer problems using analytical solutions.
- New turbulent inflow and new turbulence model WALE.
- Improved performance and scalability.
- Numerous new LSPP tools.
- Export CFD output in *vtk* format.
- Non-Newtonian flow.

New Developments

Better approximation for problems where the inflow is turbulent.

- Verification of conjugate heat transfer problems using analytical solutions.
- New turbulent inflow and new turbulence model WALE.
- Improved performance and scalability.
- Numerous new LSPP tools.
- Export CFD output in *vtk* format.
- Non-Newtonian flow.

New Developments

Cluster: 12 cores per node Intel CPU, Mellanox InfiniBand. Problem: Flow over a wall mounted cube. 1.5M elements, Re=40,000, LES

- Verification of conjugate heat transfer problems using analytical solutions.
- New turbulent inflow and new turbulence model WALE.
- Improved performance and scalability.
- Numerous new LSPP tools.
- Export CFD output in *vtk* format.
- Non-Newtonian flow.

New Developments

- New Surface Meshing tool for graded meshes.
- Visualization of free surfaces using iso-volumes.
- Post-processing of LSO output.
- Coloring of Iso-surfaces with some other field.
- New interfaces for cut-planes, etc.

- Verification of conjugate heat transfer problems using analytical solutions.
- New turbulent inflow and new turbulence model WALE.
- Improved performance and scalability.
- Numerous new LSPP tools.
- Export CFD output in vtk format.
- Non-Newtonian flow.

Future Developments

- Improve the support for multi-phase flows.
- Add porous media simulation.
- Improve the control over the boundary layer mesh generation.

Consequence: Solver coupling needed

Electromagnetics for Magnetic Metal Forming

In collaboration with: G. Mazars & G. Avrillaud: Bmax, Toulouse, France

MMF: High velocity forming process

- Forming limits increased
- Springback reduced
- Wrinkling reduced
- High reproducibility

Electromagnetics for Inductive Heating Problems

EM Coupled with ICFD for Immersion

- EM heats up a coil plunged in a kettle
- ICFD with conjugate heat transfer heats up the water

Water stream lines colored by the temperature level.

Advancement Status

- All EM solvers work on solid elements (hexahedral, tetrahedral, wedges) for conductors.
- Shells can be used for insulator materials.
- MPP and SMP available.
- The EM fields as well as EM force and Joule heating can be visualized in LS-PREPOST :
 - Fringe components
 - Vector fields
 - Element histories
- LSO can be used for certain time histories.
- Website available for more information.

The CESE Compressible CFD Solver (*CESE)

• The CESE method is a high-resolution and genuinely multidimensional compressible flow solver for solving conservation laws using the Conservation Element/Solution Element (CE/SE) method.

- Unique features include:
 - A unified treatment of space and time.
 - The introduction of the conservation element and the solution element as a vehicles for enforcing space-time flux conservation, locally and globally.
 - A novel shock capturing strategy without a *Riemann* solver.
 - Unlike conventional schemes, flow variables and their spatial derivatives are solved simultaneously.
- In addition to complex flow problems such as shock/pressure wave interaction, gaseous detonation, and cavitating flows, the CESE solver has been coupled with the solid structure solver (for FSI problems) & the solid thermal solver.
- The stochastic particle and the chemistry solvers are also coupled into the CESE solver.

CESE Solver

Main Features:

- 3D solver as well as a 2D planar and a 2D axisymmetric solver.
- Automatic coupling with structural and thermal LS-DYNA solvers. (embedded/immersed boundary approach or moving/fitted mesh)
- Cavitation model.
- Coupled stochastic particle & chemistry solvers.

Applications:

- Compressible flows (M>=0.3), especially subsonic & supersonic flows with shock waves.
- Shock/acoustic wave interaction.
- Cavitating flows.
- Conjugate heat transfer problem.
- Stochastic particle flows: fuel sprays, dusty & aerosol flows.
- Chemically reacting flows: gaseous detonation and high-speed combustion.

Moving Wedge & Shock Interaction

<image>

Cavitation and Sprays

Cavitating flow

Chemically Reacting Flows

- Detailed model.
- **5 species:** *O2,,N2,O,N,NO*
- 11 reaction steps
- Initial mixture: O₂ + 3.76N₂
- N S solver.

(Hypersonic ramped duct flow)

(Hypersonic blunt body detached shock)

Summary

- LSTC is working to be the leader in scalable, low cost, large scale, multi-physics simulations, leading to solutions to a variety of problems with a single universal numerical model. To make this possible:
 - LS-PrePost, LS-Opt, and LS-TaSC are continuously improving and gaining more usage within the LS-DYNA user community
 - LSTC is providing dummy, barrier, and head form models to reduce customer costs.
 - The incompressible flow solver is fully coupled to heat transfer and structures for FSI simulations
 - The electromagnetics solver is coupled to heat transfer and structural elements for fully coupled simulations
 - Coupling between ALE methodology, SPH, discrete elements, and the airbag particle method will lead to new application areas in the future and improve current methodologies

Future

New features and algorithms will be continuously implemented to handle new challenges and applications

- Electromagnetics,
- Acoustics,
- Compressible and incompressible fluids
- Element technology: isogeometric, Cosserat, higher-order quadratic/cubic
- Multi-physics, isogeometric, and higher order element contact
- · Discrete element methodology for modeling granular materials
- Simulation based airbag folding and THUMS dummy positioning underway
- Multi-scale capabilities are under development
 - Implementation underway (New approach which is more user friendly)
- Hybrid MPI/OPENMP developments are showing significant advantages at higher number of processors (>10,000) for both explicit and implicit solutions.

Thank You

