New frequency domain features in LS-DYNA®

Yun Huang, Zhe Cui

Livermore Software Technology Corporation

Outline

- Introduction
- Frequency response functions
- Steady state dynamics
- Random vibration & fatigue
- Response spectrum analysis
- Acoustic analysis by BEM/FEM
- Conclusion & future work

1. introduction

Keywords for frequency domain analysis

- FREQUENCY_DOMAIN_FRF
- FREQUENCY_DOMAIN_SSD
- FREQUENCY_DOMAIN_RANDOM_VIBRATION_{OPTION}
- FREQUENCY_DOMAIN_ACOUSTIC_BEM_{OPTION}
- FREQUENCY_DOMAIN_ACOUSTIC_FEM
- FREQUENCY_DOMAIN_RESPONSE_SPECTRUM

	🔁 🛃 🖉 🚍 🖨 💭 🔹 🔶 1000 / 2000 – 🔶 1	HAN - D D Q O V Teels
	Analogie Review P P P P P P P P P OANNYN P P OANNX P OANNX P OF OANNX P OF O	8 17-48 (EOS) 15-DYNA Version 971
LS-DYNA* keyword user's manual volume 1		*FREQUENCY_DOMAIN *FREQUENCY_DOMAIN Purpose: The keyword *FREQUENCY DOMAIN provides a way of defining and solving
February (0, 2012 (cruision: 1165) Version 973 LIVERMORE FORTWARE TICENSOLOCY CORPORATION (LSTC)	 *2 < GAD *2 < GAD *2 < SAMMETE 	frequency domain vibration and acoustic problems. The keyword eards in this section are defined in alphaberical order: • FREQUENCY_DOMAIN_ACOUSTIC_BEM_{(OPTION)} • FREQUENCY_DOMAIN_ACOUSTIC_FEM • FREQUENCY_DOMAIN_RESPONSE_SPECTRUM • FREQUENCY_DOMAIN_RESPONSE_SPECTRUM • FREQUENCY_DOMAIN_SOD
\sim	19 stiller 19 stiller 19 stiller 19 state 10 state	*TREQUENCY_DOMAIN_SU

Frequency domain vs. time domain

- A time-domain graph shows how a signal changes over time
- A frequency-domain graph shows the distribution of the energy (magnitude, etc.) of a signal over a range of frequencies

Frequency domain analysis

- ✓ Harmonic, periodic loading
- ✓ Resonance
- ✓ Linear dynamics
- ✓ Long history (fatigue testing)
- ✓ Non-deterministic load (random analysis)

Time domain analysis

- ✓ Transient analysis (penetration)
- ✓ Impact (crash simulation)
- ✓ Large deformation
- ✓ Non-linearity (fracture, contact)

Application of frequency domain features

- ✓ Vehicle NVH
 - Interior noise
 - Exterior radiated noise
 - Vibration
- ✓ Vehicle Durability
 - Cumulative damage ratio
 - Expected life (mileage)
- ✓ Aircraft / rocket / spacecraft vibro-acoustics
- ✓ Durability analysis of machines and electronic devices
- ✓ Acoustic design of sports products
- ✓ Civil Engineering
 - Architectural acoustics (auditorium, concert hall)
 - Earthquake resistance
- ✓ Off-shore platforms, wind turbine, etc.
 - Random vibration
 - Random fatigue

New databases in frequency domain

BINARY databases

Keyword *DATABASE_FREQUENCY_BINARY_{OPTION}

Database	Ispcode	used for		
D3SSD	21	Steady state dynamics		
D3SPCM	22	Response spectrum analysis		
D3PSD	23	Random vibration PSD		
D3RMS	24	Random vibration RMS		
D3FTG	25	Random vibration fatigue		
D3ACS	26	FEM acoustics		
D3ATV	27	BEM acoustic transfer vector		

ASCII databases

- ✓ FRF: frf_amplitude, frf_angle, frf_real, frf_imag
- ✓ BEM acoustics: Press_Pa, Press_dB, bepres, fringe_*, panel_contribution_NID,
- ✓ SSD: elout_ssd, nodout_ssd, …

Accessible to LS-PREPOST !

2. Frequency response function

Introduction: frf

- Foundation of modern experimental system analysis and experimental modal analysis
- Expresses structural response due to unit load as a function of frequency
- o property of structure system
- complex function, with real / imaginary components, or magnitude / phase angle pairs
- o Efficient restart based on modal analysis results
- o Important application in transfer path analysis

FRF formulations

Accelerance, Inertance	<u>Acceleration</u> Force		
Effective Mass	<u>Force</u> Acceleration		
Mobility	<u>Velocity</u> Force		
Impedance	<u>Force</u> Velocity		
Dynamic Compliance, Admittance, Receptance	<u>Displacement</u> Force		
Dynamic Stiffness	<u>Force</u> Displacement		

Nodal force/resultant force for a beam model

Left end of the beam is fixed and subjected to z-directional unit acceleration

Y x

Nodal force and resultant force FRF at the left end can be obtained

FRF for a spring in suspension system

FRF for a simplified car body

Nodal force applied and displacement measured

12th LS-DYNA Forum

3. Steady state dynamics

Introduction: SSD

- Harmonic excitation is often encountered in engineering systems. It is commonly produced by the unbalance in rotating machinery.
- The load may also come from periodical load, e.g. in fatigue test.
- The excitation may also come from uneven base, e.g. the force on tires running on a zig-zag road.
- Both input and output are given as complex variables (e.g. amplitude / phase angle pairs)
- Based on modal approach (modal analysis is performed first)
- May be called as
 - o Harmonic vibration
 - Steady state vibration
 - Steady state dynamics

Acceleration SSD for body frame

(given by d3ssd)

4. Random vibration & fatigue

Introduction: random vibration

Why we need random vibration analysis?

 In many cases, the loading on a structure is undeterministic
 Many vibration environments are not related to a specific driving frequency (may have input from multiple sources)
 Provide input data for random fatigue and durability analysis

Examples

- Fatigue
- Wind-turbine
- Air flow over a wing or past a car body
- Acoustic input from jet engine exhaust
- Earthquake ground motion
- Wheels running over a rough road
- Ocean wave loads on offshore platforms

Based on Boeing's N-FEARA package

A pipe under base acceleration

The model is a simple pipe with 83700 elements and 105480 nodes. It is subjected to base acceleration PSD 1) in x, y and z-directions correlated; 2) in x, y and z-directions uncorrelated.

Shaker table test

Tube thickness = 3.3 mm

The tube was fixed to the shaker tables using aluminum blocks which surrounded the tube and were tightened using screws.

Base acceleration PSD load

	1.00 [Grm	
No.	Freq.	g²/Hz
1 2	5 250	0.004082 0.004082

Ofir Shor, Yoav Lev, Yun Huang, *Simulation of a Thin Walled Aluminum Tube Subjected to Base Acceleration Using LS-DYNA's Vibro-Acoustic Solver*, 11th International LS-DYNA Users' Conference, Dearborn, MI, 2010.

MPP random vibration analysis

Introduction: random vibration fatigue

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

- Calculate fatigue life of structures under random vibration
- Based on S-N fatigue curve
- Based on probability distribution & Miner's Rule of Cumulative Damage Ratio

$$R = \sum_{i} \frac{n_i}{N_i}$$

- Schemes:
 - ✓ Steinberg's Three-band technique
 - ✓ Dirlik method
 - ✓ Narrow band method
 - ✓ Wirsching method

Typical SN (or Wöhler) curve

S-N fatigue curve definition

- By *define_curve
- By equation

 $N \cdot S^m = a$

$$\log(S) = a - b \cdot \log(N)$$

N: number of cycles for fatigue failure S: stress

Source of picture: http://www.efunda.com

A beam with pre-defined notch

Acceleration PSD (exposure time: 1800 seconds)

Expected life	Damage ratio	CODE	
7mn 25s	-	ANSYS	
4mn 10s	7.19	RADIOSS®	
5mn 25s	5.54	BULK	
2mn 05s	14.41	LS-DYNA	
5mn 45s	5.08		
6mn 03s	6.03		
4mn 06s	7.31		
22mn 18s	1.35		
	7mn 25s 4mn 10s 5mn 25s 2mn 05s 5mn 45s 6mn 03s 4mn 06s	7mn 25s-4mn 10s7.195mn 25s5.542mn 05s14.415mn 45s5.086mn 03s6.034mn 06s7.31	7mn 25s - ANSYS 4mn 10s 7.19 RADIOSS® 5mn 25s 5.54 BULK 2mn 05s 14.41 LS-DYNA 5mn 45s 5.08 LS-DYNA 6mn 03s 6.03 LS-DYNA

CODE	RMS Sxx
ANSYS	33.5 MPa
RADIOSS® BULK	35.7 MPa
LS-DYNA	35.0 MPa

Cumulative damage ratio by Steinberg's method

Cumulative damage ratio by Dirlik method

Experiment setup

Failure at the notched point in experiment

How to include pre-existing fatigue damage

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

Card1	1	2	3	4	5	6	7	8
Variable	MDMIN	MDMAX	FNMIM	FNMAX	RESTRT	MFTG	RESTRM	INFTG
Туре	Ι	Ι	F	F	Ι	Ι	Ι	Ι
Default	1		0.0		0	0	0	0

Define Card 7 if option FATIGUE is used and INFTG=1.

Card7	1	2	3	4	5	6	7	8
Variable				FILE	NAME			
Туре				(C			
Default				d3	ftg			

VARIABLE	DESCRIPTION
INFTG	Flag for including initial damage ratio. EQ.0: no initial damage ratio, EQ.1: read existing d3ftg file to get initial damage ratio.
FILENAME	Path and name of existing binary database (by default, D3FTG) for initial damage ratio.

Regarding fatigue life for stress below last pt on SN curve

SNLIMT

Fatigue life for stress lower than the lowest stress on S-N curve. EQ.0: use the life at the last point on S-N curve EQ.1: extrapolation from the last two points on S-N curve EQ.2: infinity.

Example: multi S-N curves in one model

5. Response spectrum analysis

Introduction: response spectrum analysis

*FREQUENCY_DOMAIN_RESPONSE_SPECTRUM

- Use various mode combination methods to evaluate peak response of structure due to input spectrum.
- The input spectrum is the peak response (acceleration, velocity or displacement) of single degree freedom system with different natural frequencies.
- The input spectrum is dependent on damping (using *DEFINE_TABLE to define the series of excitation spectrum corresponding to each damping ratio).
- Output binary database: d3spcm (accessible by LS-PREPOST).
- It is an approximate method.
- It has important application in *earthquake engineering, nuclear* power plants design etc.

Capabilities

Mode combination

- SRSS method
 NRC Grouping method
- CQC method
- \circ Double Sum methods
- ✓ Rosenblueth-Elorduy coefficient
 ✓ Gupta-Cordero coefficient
 ✓ Modified Gupta-Cordero coefficient
 NRL SUM method
 Rosenblueth method

Input spectrum

- Base velocity
 Base acceleration
 Base displacement
 Nodal force
- o Pressure

Frequency interpolation

o Logarithmic
o Semi-logarithmic
o Linear

Results

BINARY plot file: d3spcm
ASCII files: nodout_spcm, elout_spcm

Applications

- $_{\rm O}$ Civil and hydraulic buildings
 - ✓ Dams
 - ✓ Bridges
 - ✓ High buildings
- o Nuclear power plants

Example: multi-story tower

Fringe Levels

4.923e+00

Contours of Effective Stress (v-m)

max IP. value

Contours of X-acceleration min=0, at node# 1 max=4.92278, at node# 4082

Loading X, Y acceleration

Mode combination SRSS

Example: arch dam

The pseudo-acceleration spectrum of EI Centro earthquake ground motion (ζ =5%)

The 1940 El Centro earthquake (or 1940 Imperial Valley earthquake) occurred on May 18 in the Imperial Valley in Southern California near the border of the United States and Mexico. It had a magnitude of 6.9.

- o 464.88 feet high
- o Rigid foundation
- Subjected to *x*-directional ground acceleration

6. Acoustic analysis by BEM/FEM

Introduction: vibro-acoustics

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_{OPTION}

BEM (accurate)

Indirect variational boundary element method

Collocation boundary element method They used to be time consuming A fast solver based on domain decomposition MPP version

Approximate (simplified) methods

- Rayleigh method
- Kirchhoff method

Assumptions and simplification in formulation Very fast since no equation system to solve

Acoustic panel contribution

$$p(P) = \sum_{j=1}^{N} \int_{\Gamma_j} \left(G \frac{\partial p}{\partial n} - p \frac{\partial G}{\partial n} \right) d\Gamma_j$$
$$= \sum_{j=1}^{N} p_j(P)$$

A simplified tunnel model

Radiated noise by a car

An imaginary semi-sphere for better visualization of the noise distribution

Muffler transmission loss analysis

TL (Transmission loss) is the difference in the sound power level between the incident wave entering and the transmitted wave exiting the muffler when the muffler termination is anechoic (no reflection of sound).

$$TL = 10\log_{10}\frac{W_i}{W_t}$$

Double expansion chamber

***BOUNDARY_ACOUSTIC_MAPPING**

Purpose: Define a set of elements or segments on structure for mapping structural nodal velocity to boundary of acoustic volume.

Card	1	2	3	4	5	6	7	8
Variable	SSID	STYP						
Туре	Ι	Ι						
Default	none	0						

VARIABLE

DESCRIPTION

SSID Set or part ID

STYP Set type: EQ.0: part set ID, see *SET_PART, EQ.1: part ID, see *PART, EQ.2: segment set ID, see *SET_SEGMENT.

Mesh A: 20 × 30 (600)

Original mesh for structure surface

CPU time (Intel Xeon 1.6 GHz)

Mesh A	16 min 34 sec			
Mesh B	10 min 10 sec			
Mesh C	6 min 49 sec			

Freq (Hz)

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ATV

- It calculates acoustic pressure (and sound pressure level) at field points due to unit normal velocity of each surface node.
- ATV is dependent on structure model, properties of acoustic fluid as well as location of field points.
- ATV is useful if the same structure needs to be studied under multiple load cases.

Introduction: FEM Acoustics

*FREQUENCY_DOMAIN_ACOUSTIC_FEM

- An alternative method for acoustics. It helps predict and improve sound and noise performance of various systems. The FEM simulates the entire propagation volume -- being air or water.
- Compute acoustic pressure and SPL (sound pressure level)
- Output binary database: d3acs (accessible by LS-PREPOST)
- Output ASCII database: Press_Pa and Press_dB as xyplot files
- Output frequency range dependent on mesh size
- Very fast since
 - ✓ One unknown per node
 - ✓ The majority of the matrix is unchanged for all frequencies
 - ✓ Using a fast sparse matrix iterative solver

Hexahedron

Tetrahedron

Pentahedron

Example: compartment of vehicle

Model information

Excitation of the compartment $(1.4 \times 0.5 \times 0.6)$ m³ by a velocity of 7mm/s

Pressure distribution

Example: a cylinder model

Introduction

To solve an interior acoustic problem by variational indirect BEM, collocation BEM and FEM. The cylinder duct is excited by harmonic nodal force at one end.

Nodal force 0.01N is applied for frequency range of 10-20000 Hz.

Acoustic pressure distribution

(given by d3acs)

f = 5000 Hz

FEM acoustic analysis following SSD ana Time = 15000 Contours of Z-velocity min=0.133217, at node# 2845 max=80.3927, at node# 2045

FEM acoustic analysis following SSD ana

Time =

5000 Contours of Z-velocity

min=0.00659163, at node# 108

max=52.7459, at node# 1183

f = 15000 Hz

f = 10000 Hz

f = 20000 Hz

7. Conclusion & future work

A set of frequency domain features have been implemented, towards NVH, durability analysis of vehicles and other vibration and acoustic analysis

- ✓ Frequency Response Function
- ✓ Steady State Dynamics
- ✓ Random Vibration & Fatigue
- ✓ Acoustic analysis by BEM/FEM
- ✓ Response spectrum analysis

Future work

- SEA method for high frequency acoustics
- Fast multi-pole BEM for acoustics
- Infinite acoustic FEM
- Fatigue analysis with strains
- Feedbacks and suggestions from users

Acknowledgements:

- ✤ CIMES, France
- ✤ Jaguar Landrover, UK
- ✤ JSOL, Japan
- ✤ NCAC, USA
- Parker Hannifin Corporation, USA
- Predictive Engineering, USA
- ✤ Rafael, Israel

Thank you!