

New Developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA

Gregor Knust, Thomas Klöppel, Andre Haufe

DYNAmore GmbH

LS-DYNA Developer Forum Filderstadt, 24.09.2013

Composites

- A composite is a combination of two or more materials, differing in form or composition on a macroscale. The constituents do not dissolve or merge completely into one another, but can be physically identified and exhibit an interface.
- Historical facts
 - straw was used by Israelites to strengthen mud bricks
 - plywood was used by the ancient Egyptians
- Today, carbon/glass fibers reinforced polymers gain in importance as lightweight structures for automotive and aerospace industries
 - Increasingly demanding regulations for carbon dioxide emission
 - These materials allow for the manufacturing of geometrically and functionally more complex parts than most standard materials

Classification based on reinforcing material structure

 particulate composite materials:

Concrete (cement/stone/steel)

 fibrous composite materials:

Short fiber reinforced polymers (glass/PP)

Long fiber reinforced polymers (glass/carbon/PA/PP/EP)

Continuous fiber reinforced polymers (glass/carbon/PA/PP/EP)

 laminated composite materials:

Sandwich/Laminates (alloy/polymer/glass/PVB)

• combinations of the above types

Properties of continuous fiber reinforces plastics (FRP)

- Fibers show higher strength and stiffness than material in bulk form
 - Fewer internal defects
 - Aligned crystalline structure
- Strongly anisotropic tensile response
 - Typical stiffness ratio: 20:1 100:1
 - Fibers linear elastic, matrix non-linear

• Non-linear shear response

The fiber orientation is the most important characteristic for structural stiffness and load bearing capacity

A thorough understanding of the manufacturing process is extremely important

Agenda

- Process simulation for thermoplastic pre-pregs
 - Introduction
 - Material formulation
 - Examples
- Process simulation thermoset matrix materials
 - RTM process
 - Wet molding
- Summary

Thermoplastic pre-pregs – process overview

- Properties of thermoplastic matrix material
 - At high temperature, molten material behaves like a viscous fluid
 - At low temperature, material can be described as an elastio-plastic solid
- Process overview
 heating
 - Process is reversible as no chemical curing occurs
 - Relatively short cycle times can be realized

Thermoplastic pre-pregs – modeling aspects

- Thermo-mechanical coupling crucial for predictive simulation study
 - Well-established feature of LS-DYNA
- Matrix
 - Temperature-dependent elastic properties
 - Decreasing yield stress value for increasing temperature
 - Non-linear relation between yield stress and equivalent plastic strain
- Reinforcement
 - Strong anisotropy
 - Almost linear stress response of the fibers to elongation
 - Non-linear behavior for shear deformation

Thermoplastic pre-pregs – modeling aspects

- For applications in mind we have to deal with complex simulations
 - Homogenized macroscopic approach is preferable
 - Matrix and fibers should both be accounted for by constitutive model
 - Sheets should be discretized with shell elements

Thermoplastic pre-pregs – material formulation

- Additive split for matrix and fiber contributions
- Matrix formulation
 - Elastic properties are defined with load curves w.r.t. to temperature
 - Van-Mises yield criterion is implemented
 - Yield stress is given by load tables w.r.t.
 - Temperature
 - Equivalent plastic strain
 - Return-mapping algorithm

Thermoplastic pre-pregs – fiber contribution

- Motivation:
 - Woven fabric can be simulated using beam elements
 - Different element formulations for warp/weft direction and diagonals
 - Non-trivial parameter identification and validation
 - High modeling complexity

Thermoplastic pre-pregs – fiber contribution

- Anisotropic and hyperelastic material definition
- Discretization with shell elements, where the fiber families are represented by vectors stored at the integration points
 - Its initial orientation \vec{m}_i^0 is an input parameter
 - current configuration is given as $\vec{m}_i = F\vec{m}_i^0$
- Behavior under compression / tension
 - Elongation can easily be computed using the current length λ_i of vector \vec{m}_i
 - Load curve defines stresses for given λ_i
- Shear response
 - Based on the angle between neighboring fibers
 - Load curve defines stresses for given angle

Thermoplastic pre-pregs – fiber contribution

- Anisotropic and hyperelastic material definition
- Discretization with shell elements, where the fiber families are represented by vectors stored at the integration points
 - Its initial orientation \vec{m}_i^0 is an input parameter
 - current configuration is given as $\vec{m}_i = \underline{F}\vec{m}_i^0$
- Behavior under compression / tension
 - Elongation can easily be computed using the current length λ_i of vector \vec{m}_i
 - Load curve defines stresses for given λ_i
- Shear response
 - Based on the angle between neighboring fibers
 - Load curve defines stresses for given angle

Thermoplastic pre-pregs – picture frame test

- Standard experimental set-up to characterize shear behavior
- Results show significant temperature dependence
 - At low temperature, matrix material dominates
 - At high temperature, behavior similar as for dry fabric material

Thermoplastic pre-pregs – Validation

- Picture frame test is simulated for different temperatures
- Simulation result show good agreement with experimental data
 - Realistic non-linear shear behavior of fabric (highest temperature)
 - Effect of matrix "curing" with decreasing temperature is well captured

- Tool is closed within 80ms, kept closed for 3ms, and opened within 56.5ms
- Thermo-mechanical coupling between working piece and tools can be included
- Material parameters for matrix and textile from picture frame test
- 2 fiber families
 - $\pm 45^{\circ}$
 - Woven structure

- Closing and opening at a constant temperature of T_m (molten phase of matrix material)
- Deformation is governed by properties of the fabric
 - Very low plastic deformations induced
 - Many wrinkles form

- Closing at T_m , cooling down to T_c (cured material) with closed tools, and opening at T_c
- Matrix shows elasto-plastic behavior
 - Plastic deformations are induced, but significant spring-back
 - Still visible influence of fiber orientations on deformation pattern

- T_m up to t=70 ms, then cooling down (13 ms) to T_c
- Opening at a constant temperature T_c
- Significantly reduced spring-back
- Only few wrinkles form

- Preliminary simulation for a thermo-mechanically coupled system with simplified material parameter set
- Initial temperature of the pre-preg is 200°C
- Color-coded is plastic deformation

Thermoplastic pre-pregs – Work in Progress

- Presented results generated with user defined material in LS-DYNA
- Implementation as standard material *MAT_249 with
 - Extension for rovings and strain-rate dependency for matrix formulation
 - Elasto-plastic formulation for shear and bending of the fibers

- Improved post-processing capabilities in LS-PrePost
- Tools to map results onto the mesh for crashworthiness simulations

12th LS-DYNA Forum

Agenda

- Process simulation for thermoplastic pre-pregs
 - Introduction
 - Material formulation
 - Examples
- Process simulation thermoset matrix materials
 - RTM process
 - Wet molding
- Summary

Resin Transfer Molding (RTM) – process overview

- In general, thermosets (e.g. epoxy) have superior mechanical properties as compared to thermoplastics
- All manufacturing processes involve a chemical curing of a liquid resin
 - Curing is induced by high temperatures and chemical additives
 - Chemical reactions of curing are nonreversible
- Process overview

preparation of textile

draping

infiltration

curing

[source: Benteler-SGL]

Resin Transfer Molding (RTM) – Modeling aspects

- Infiltration is a 3D flow problem through a porous media
- Infiltration process depends on quality of the draping as local porosity depends on
 - Orientation of the fibers
 - Packing density of the fibers

 Flow of the resin can lead to displacements and deformations of the fabric and a fully coupled fluid-structure interaction (FSI) simulation might be necessary

Resin Transfer Molding (RTM) – Draping in LS-DYNA

- Dry fabric can be modeled with
 - *MAT_034, *MAT_234, *MAT_235, ...
- The new material formulation (fiber contribution) can be used
 - Simple and flexible material input
 - No restriction w.r.t. element formulation or usage in laminates

fiber orientation ±45°, final state

fiber orientation ±60°, final state

24 - 25 September 2013, Filderstadt, Germany

12th LS-DYNA Forum

Resin Transfer Molding (RTM) – LS-DYNA

3D flow problems through a porous media can be modeled in LS-DYNA using keywords:

- *LOAD_BODY_POROUS
 - Non-isotropic porosity definition
 - Permeability defined either w.r.t. element or global coordinates
- *CONSTRAINED_LAGRANGE_IN_SOLID
 - additionally supports fully coupled FSI simulations

Resin Transfer Molding (RTM) – Simulations

- Preliminary simulation with isotropic poros
- Mesh obtained from draping simulation
- Flow induced by pressure inlet
- One injection point for resin is considered (blue)

Resin Transfer Molding (RTM) – Simulations

- Defining the porosity with respect to the element coordinate system:
 - Easy to specify a porosity for example in thickness direction even for curved geometries
 - Important if the geometry results from a previous draping simulation

Resin Transfer Molding (RTM) – Work in Progress

- Draping results generated with user defined material in LS-DYNA
- New *MAT_249 will have an option for dry fabric
- Mapping tools to transfer draping results onto infiltration simulations to close process chain
- Close collaboration with LSTC
 - Input of porosity tensors to model truly anisotropic permeabilities
 - element-wise input of this tensor, which is necessary for the mapping

Wet molding – process overview

- Draping and injection are done in one single step
- Process overview

- Basically, a simulation requires the same numerical tools as RTM
- Simulation more complex
 - Fluid-structure interaction plays an important role
 - Fluid domain, viscosity, and porosity change during the simulation

Wet molding – preliminary simulations

- Constant isotropic porosities assumed
- Cartesian background fluid grid (not shown)

- Next steps (with LSTC)
 - New ALE mesh motion strategy
 - Empirical relation between fabric deformation and porosity

Agenda

- Process simulation for thermoplastic pre-pregs
 - Introduction
 - Material formulation
 - Examples
- Process simulation thermoset matrix materials
 - RTM process
 - Wet molding
- Summary

Summary

- Simulation of complete process chain for thermoplastic pre-pregs:
- Thermo-mechanical coupling possible in LS-DYNA
- Novel, flexible, homogenized material formulation
 - Thermo-elasto-plastic constitutive model for the matrix material
 - Anistotropic hyperelastic description for the reinforcing fibers
 - Simple and flexible input
 - No restrictions w.r.t. to element formulation
- Simulations show excellent agreement with picture frame tests results
- Preliminary stamping simulations very promising

Summary

- Thermoset matrix material:
- Properties of dry fabric can be modeled with new material formulation
- Infiltration as 3D-flow through porous media using the CLISkeyword
- Work in progress:
 - Mapping from draping results to locally varying porosities for RTM
 - Coupling of fiber deformations to permeabilities for wet molding

Thank you very much for your attention!

thomas.kloeppel@dynamore.de

12th LS-DYNA Forum