Decision Making
Information Sharing
Directions

Improvements to material 58 (woven composite) (Addition of strain rate effects) LS-DYNA Anwender Forum, Stuttgart, 2013

25 September 2013

Hyundai Motor European Technical Center GmbH Engineering Design Department Vehicle CAE Jerome Coulton

Contents

- I. Motivation
 - 1. Background
 - 2. Material details
 - 3. Effects of strain rate on material
 - 4. Material model choices
- II. Proposed Changes to Material model 58
- III. Validation Load Case
- IV. Project Phases
 - 1. Status models
 - 2. Beta 1 Review
 - 3. Beta 2 Review
 - 4. Beta 3 Review
- V. Achievements & Conclusions
- VI. Acknowledgements
- Appendices

Motivation - Background

- In the global quest to reduce CO₂ emissions, via reduced vehicle mass, there is an increasing use of high strength glass composites in the EU.
- The new generation of new woven fiber composites with thermoplastic matrices (organo-sheet) can be thermoformed and then back overmolded.
- Of these, glass based woven composites have been identified for high strength with low specific weight and cost.
 - Serial Examples :
 - ⇒ BMW M3 Bumpers
 - ⇒ Audi A8 Frontend Module
 - ⇒ Opel Astra OPC Front Seat Pan
 - \Rightarrow VW Brake Pedal (SoP 2013)

Examples of Organo-sheet Serial Products

Motivation - Material Details

□ Organo-sheet is a woven material:

> Fiber:

- \Rightarrow Glass
- \Rightarrow Carbon fibers
- Matrix
 - \Rightarrow Polyamide
 - \Rightarrow Polypropylene
- Unlike steel, the material stiffness is anisotropic i.e. the stiffness and strength are unequal in different directions. This makes CAE much more difficult.

Organo-sheet weaves

Tensile Tests – Effect of Fiber Angle

Motivation – Effects of strain rate on material

- Similar to steel, the effect of strain rate on material strength is significant
- Using the 1983 Johnson and Cook expression for strain rate sensitivity the effect of strain rate can be quantified:

 $\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \left(1 + \frac{\boldsymbol{\varepsilon}}{\boldsymbol{\varepsilon}_0} \right)$

Red highlighted strain rate factors (c) for organo-sheet material are greater than those for steel

Material	Fiber	Loading	Rate et	Rate effect (c)	
wateria	Angle	direction	Modulus	Strength	
① Organo-sheet	0°	+	0.008	0.027	
(Supplier 1 –	0	-	0.131	0.086	
Glass fiber + PP	45°	+	-0.074	-0.017	
matrix)	40	-	No Data	No Data	
② Organo-sheet	0°	+	-0.012	0.038	
(Supplier 2 -	0	-	0.014	0.080	
Glass fiber + PA	1 E °	+	0.015	0.058	
matrix	45°	-	0.022	0.008	
Material	Grade	Yield Stress	Modulus	Strength	
③ Steel (Data	1006	350		0.022	
from '83 Johnson/Cook	4340	792	No Data	0.014	
paper)	S-7 Tool	1537		0.012	

Generalized effects of applied strain rate on material properties

Problem to be solved / Material model choices

- Key to high CAE accuracy is the inclusion of strain rate dependency for strength.
 - This is not available for the majority of composite material models and has only recently been included in material 54 in version 971 release R7.
- Material model 58 is a good model as it includes non-linearity.
 - Material model 158 is limited to 15% strain rate effect. This is not enough.
 - No strain-rate effect means the user needs two, or more models for quasistatic and "dynamic" load cases.

		Stiffness Strength							
LS-	In-P		lane		In-Plane Out of			Extra	
DYNA model	0/9	0/90° 45° 0/90° 45° P		Plane	cost				
	Non- lin.	έ rate	Non- lin.	έ rate	έrate		Damage		
22	Х	Х	Х	Х	Х	Х	Х	Х	
54	Х	Х	Х	Х	✓	✓	✓	Х	
58	Х	Х	√	Х	X	X	X	Х	
158	Х	~	~	~	✓	\checkmark	Х	Х	
162	\checkmark	~	~	~	✓	\checkmark	✓	✓	
261	Х	Х	~	Х	Х	Х	Х	Х	
262	Х	Х	~	Х	Х	Х	Х	Х	

Overview of composite material model features

Proposed Changes to Material Model 58

Similar to the changes to mat 54, the following new features were added to the standard mat 58 material model:

① Out of plane transverse shear damage

② Generalized strain rate dependency of breaking strength

In addition the following additional effects were also added

③ Generalized strain rate dependency of shear hardening stiffness

④ Generalized strain rate dependency of strain to break (damage)

Generalized Strain rate Dependency

7

Validation Load Case

Punch Test

- ➢ DIN EN ISO 6603-2
 - ⇒ PA6 GF46 Organo-sheet
- Loading speeds
 - \Rightarrow Quasi-static (ϵ '~ 0.001 s-1)
 - ⇒ Dynamic (ϵ '~ 200 s-1)

Disc Punch Test Configuration

Simulation Model

Project Phases

- 1. Status models
 - Issue: No strain rate effects
 - \Rightarrow 2 separate data sets
- 2. Beta 1 Review:
 - Issue: Strain rate scaling
 - ⇒ Linear resample with 100 points
- 3. Beta 2 Review:
 - Issue: Strength scaling only
 - ⇒ Parameter identification not possible
- 4. Beta 3 Review: OK
 - Strength & Ductility Scaling
 - ⇒ Parameter identification OK

Project Steps

□ Status: Fixed Strain rates

- > Quasi-static (ε'~ 0.001 s-1)
- > Dynamic (ε'~ 200 s-1)

Accuracy

WIFac Cross-correlation (%)	Test Static	Test Dynamic
CAE (Q-S) standard	85	65
CAE (Dynamic) standard	60	83

Disc Punch Test Simulation

Project Phase 2: Beta 1

- Issue: Internal curve resampling
 - Only linear rate resampling
 - \Rightarrow Underestimates strength

□ Accuracy

□ Identification of issue:

Resampling of curves

Disc Punch Test Simulation

—0.10 —0.00

Project Phase 3: Beta 2

LS-DYNA Dynamic LS-DYNA Static 21 pars, 3 hists 21 pars, 3 hists Termination criteria **Build Metamodels** 0 linear surfaces LSOPT Process – 2 load cases Time = 0.002200___0.00 **Disc Punch Test Simulation**

Identification of issue:

LSOPT parameter identification

Sampling Punch

5 vars, 10 d-opt designs

Project Phase 3: Beta 2

- □ Identification of Issue:
 - LSOPT parameter identification
 - ⇒ Tensile Strain to break critical
 - ⇒ Conflicting requirements
 - Quasi-static = low strain
 - Dynamic = high strain
 - No solution possible with stress scaling only (e.g. mat 54)

Effect of Breaking Strain Parameter

Quasi-static Meta Surface Response

Dynamic Meta Surface Response

□ Issue:

> None

□ Accuracy

85

60

65

83

CAE (Q-S) standard

CAE (Dynamic) standard

Fina	al St	atus	
 		· ·	 _

WIFac	Test	Test
Cross-correlation (%)	Static	Dynamic
CAE (variable rate) updated mat 58	97	85

Achievements and Conclusions

- □ Single model for both static and dynamic CAE
 - Variable strain rate effect
- □ Flexible implementation of strain rate effects
 - Arbitrary (not limited by Johnson/Cook or Power laws)
 - Independent in 5 directions
 - \Rightarrow 0° Tension **≠** Compression
 - \Rightarrow 45° Tension = Compression
 - ⇒ 90° Tension **≠** Compression
- Real Effect Modeling Possible

Different strength and damage modes dependent on strain rate

Acknowledgements

- □ The work presented is the result of a consortium between :
 - Hyundai Motor Europe Technical Center GmbH http://www.hmetc.com/

DYNAmore GmbH

http://www.dynamore.de/

- The author would like to especially express his thanks to:
 - Dr. Stefan Hartmann

Hyundai Motor Europe Technical Center GmbH, Rüsselsheim / Germany

Appendix 1: Manufacturing Process

- □ SpriForm (in-mold forming:
 - Woven glass composites with a thermoplastic matrix is generically called "organo-sheet" and consists of:
 - \Rightarrow Plain woven (filament glass) fiber mat.
 - \Rightarrow Polyamide-6 or Polypropylene matrices.
 - A particular advantage of these organo-sheets is that they can be thermoformed and then over-molded in one tool resulting in fast cycle times i.e. low production costs.
 - In order to take advantage of the high strength of long fiber thermoplastic material systems and design new products, CAE optimization of proposed designs are necessary.

The SpriForm Process (in-mold forming)

Card 1	1	2	3	4	5	6	7	8
Variable	MID	RO	EA	EB	(EC)	PRBA	PTAU1	PGAMMA1
Туре	A8	F	F	F	F	F	<u>/</u> F	<u>/</u> F
Card 2	1	2	3	4	5	6	7	8
Variable	GAB	GBC	GCA	SLIMT1	SLIMC1	SLIMT2	/ SLIMC2 /	SLIMS
Туре	F	F	F	F	F	F	F,	F
Card 3	1	2	3	4	5	6 /	7 1	8
Variable	AOPT	TSIZE	ERODS	SOFT	FS	EPSF /	EPSR,	TSMD
Туре	F	F	F	F	F	F ;	F /	F
Card 4	1	2	3	4	5	6 /	7 /	8
Variable	XP	YP	ZP	A1	A2	A3 /		
Туре	F	F	F	F	F	F /	i	
Card 5	1	2	3	4	5	6,	7	8
Variable	V1	V2	V3	D1	D2	D <mark>3</mark>	BETA	
Туре	F	F	F	F	F	<u>F</u>	<u>/</u> F	
Card 6	1	2	3	4	5	<mark>,</mark> 6	7	8
Variable	E11C	E11T	E220	E22T	GMS [•]	/	1	
Туре	F \	F '	F !	F !	F I			
Card 7	1	2	3	4	5	/ 6	<mark>i</mark> 7	8
Variable	• XC 1	<mark>۹</mark> XT ۱	• YC i	<mark>۹</mark> YT ۱	• SC i	/	!	
Туре	<u> </u>	I F	I F	I F	1 F !	i	;	
Card 8	1	2	3	4	5	6	▶ 7	8
Variable	LCXC 1		LCYC	LCYT	LCSC	LCTAU1	LCGAM1	DT
Туре								F
Card 9	1 🔻	2	3 🍾	4	5			
Variable	LCE11C	LCE11T	LCE22C	LCE22T	LCGMS			
Туре	l				I			

Appendix 3: Parameter Definitions

_		
*	LCXC	Load curve ID for XC vs. strain rate (XC is ignored with that option)
*	LCXT	Load curve ID for XT vs. strain rate (XT is ignored with that option)
*	LCYC	Load curve ID for YC vs. strain rate (YC is ignored with that option)
*	LCYT	Load curve ID for YT vs. strain rate (YT is ignored with that option)
*	LCSC	Load curve ID for SC vs. strain rate (SC is ignored with that option)
*	LCTAU1	Load curve ID for TAU1 vs. strain rate (TAU1 is ignored with that option, only active for FS=-1.0)
*	LCGAM1	Load curve ID for GAMMA1 vs. strain rate
		(GAMMA1 is ignored with that option, only active for FS=-1.0)
*	DT	Strain rate averaging option.
		EQ.0.0: Strain rate is evaluated using a running average.
		LT.0.0: Strain rate is evaluated using average of last 11 time steps.
		GT.0.0: Strain rate is averaged over the last DT time units.
*	LCE11C	Load curve ID for E11C vs. strain rate (E11C is ignored with that option)
*	LCE11T	Load curve ID for E11T vs. strain rate (E11T is ignored with that option)
*	LCE22C	Load curve ID for E22C vs. strain rate (E22C is ignored with that option)
*	LCE22T	Load curve ID for E22T vs. strain rate (E22T is ignored with that option)
*	LCGMS	Load curve ID for GMS vs. strain rate (GMS is ignored with that option)

Appendix 4: New Output Time Histories

- **#** 19 dmg56 Damage parameter for transverse shear behavior
- # 20 e1dot Strain rate in the longitudinal direction: $\dot{\epsilon}_{aa}$
- # 21 e2dot Strain rate in the transverse direction: $\dot{\epsilon}_{bb}$
- # 22 e3dot Strain rate in the in-plane direction: $\dot{\epsilon}_{ab}$

21

