Drilling Rotation Constraint for Shell Elements in Implicit and Explicit Analyses

LS-DYNA Forum 2013 Stuttgart-Filderstadt

Tobias Erhart

Motivation

• Standard (LS-DYNA) shell elements, e.g. the under integrated Belytschko-Lin-Tsay shell (element type 2) or the fully integrated shell with assumed strain interpolation (element type 16), do not possess stiffness in the **normal rotational (drilling) degree of freedom**.

- In **implicit analyses**, this missing stiffness would lead to a singular system matrix. Therefore, a small amount of torsional stiffness aka drilling rotation constraint is added. What should be the amount of this stiffness?
- The same approach is now available for **explicit analyses** since version R7. In which situations could this be helpful?

- Theoretical background of drilling rotation constraint method
- Associated LS-DYNA keyword input parameters
- Example 1: Flat vs. curved geometry
- Example 2: Pre-twisted cantilever
- Example 3: Simplified crashrail
- Example 4: Metal forming
- Example 5: Spot weld connections
- Example 6: Screw
- Summary

Drilling rotation degree of freedom

- Shell elements are defined by their thickness and a reference surface
- Load is carried by membrane/bending action
- 6 degrees of freedom at each node:
 3 translational and 3 rotational

- Two rotations about in-plane axes describe bending and twisting
- Third rotational d.o.f. allows easy connection to other shells or beams, but it is not needed for shell kinematics itself; no stiffness is associated
- This drilling d.o.f. is resisted in curved shell topologies by bending stiffness of adjacent elements
- Flat shell topologies allow **unconstrained drill rotation**.

AUTOSPC: automatic single point constraint method

- Global stiffness matrix examined for unattached degrees of freedom
- Generate additional constraints as necessary to avoid negative eigenvalues
- Tolerance value AUTOTOL: smallest singular value / largest singular value

Local constraint method

- Kinematic constraint (local SPC) added on element level
- SPC added or deleted depending on local curvature criterion

DRCM: drilling rotation constraint method

- Rotational stiffness in form of a fictitious torsional spring
- Same amount regardless of shell topology (curved or flat)

Drilling rotation constraint method

• Generalized drilling strain rate for node *n* can be defined as:

$$\dot{\varepsilon}_{n}^{\text{drill}} = \boldsymbol{\omega}_{n} \cdot \mathbf{n}_{n} - \frac{(\mathbf{v}_{n+1} - \mathbf{v}_{n}) \cdot \mathbf{n}_{n} \times (\mathbf{x}_{n+1} - \mathbf{x}_{n})}{2\|\mathbf{x}_{n+1} - \mathbf{x}_{n}\|^{2}} - \frac{(\mathbf{v}_{n-1} - \mathbf{v}_{n}) \cdot \mathbf{n}_{n} \times (\mathbf{x}_{n-1} - \mathbf{x}_{n})}{2\|\mathbf{x}_{n-1} - \mathbf{x}_{n}\|^{2}}$$

• Associating a rotational stiffness leads to generalized stress rate: $\dot{\sigma}_n^{\text{drill}} = 0.0005 \ k \ E \ \dot{\varepsilon}_n^{\text{drill}}$

where k = user defined scaling parameter DRCPRM (1.0 by default) and E = Young's modulus of shell element

 $\mathbf{f}_n = V \sigma_n^{\text{drill}} \mathbf{B}_n^T$ (needed in explicit and implicit calculations)

• With element volume V and corresponding B-operator

$$\mathbf{B}_{n}^{T} = \begin{bmatrix} \mathbf{n}_{n} \times (\mathbf{x}_{n+1} - \mathbf{x}_{n}) \\ \frac{\mathbf{n}_{n} \times (\mathbf{x}_{n+1} - \mathbf{x}_{n})}{2 \|\mathbf{x}_{n+1} - \mathbf{x}_{n}\|^{2}} + \frac{\mathbf{n}_{n} \times (\mathbf{x}_{n-1} - \mathbf{x}_{n})}{2 \|\mathbf{x}_{n-1} - \mathbf{x}_{n}\|^{2}} \\ - \frac{\mathbf{n}_{n} \times (\mathbf{x}_{n+1} - \mathbf{x}_{n})}{2 \|\mathbf{x}_{n+1} - \mathbf{x}_{n}\|^{2}} \\ - \frac{\mathbf{n}_{n} \times (\mathbf{x}_{n-1} - \mathbf{x}_{n})}{2 \|\mathbf{x}_{n-1} - \mathbf{x}_{n}\|^{2}} \end{bmatrix}$$

• Finally, the stiffness matrix is given by

$$\mathbf{K}_n = 0.0005 \ k \ E \ V \ \mathbf{B}_n^T \ \mathbf{B}_n$$
 needed in implicit calculations

• **IMPLICIT** - DRCM is **default behavior** for the whole model

*CONTROL_IMPLICIT_SOLVER

Card 1	1	2	3	4	5	6	7	8
Variable	LSOLVR	LPRINT	NEGEV	ORDER	DRCM	DRCPRM	AUTOSPC	AUTOTOL
Туре	Ι	Ι	Ι	Ι	Ι	F	Ι	F
Default	4	0	2	0	4	depends	1	see below

• **EXPLICIT** – DRCM is **optional** for defined part set since R7.0.0

*CONTROL_SHELL

Card 4	1	2	3	4	5	6	7	8
Variable	NFAIL1	NFAIL4	PSNFAIL	KEEPCS	DELFR	DRCPSID	DRCPRM	
Туре	Ι	Ι	Ι	Ι	Ι	Ι	F	
Default	inactive	inactive	0	0	0	0	1.0	

- Common test problem for shell elements
- Features a large initial twist such that its opposite edges are at a 90° angle with respect to each other

- Warping results in bending-membrane coupling
- The pre-twisted beam is commonly used to evaluate the ability of quadrilateral elements to handle double curvature geometries

Example 2: Pre-twisted cantilever

• **Convergence study** with 6 different discretizations

12 elements, warpage angle = 20°

480 elements, warpage angle = 3°

- Results with different scaling parameters (DRCPRM)
- Belytschko-Tsay shells (#2) with default warping stiffness (BWC=0)
- Fully integrated shells (#16) with default warping stiffness (IHQ=0)

- Results with different scaling parameters (DRCPRM)
- Belytschko-Tsay shells (#2) with enhanced warping stiffness (BWC=1)
- Fully integrated shells (#16) with full projection warping stiffness (IHQ=8)

recommended for best results in most situations

Example 3: Simple crashrail

(Implicit) study of different
 scaling parameters for the drilling stiffness

Default value of **DRCPRM = 1.0** seems to be a good choice

Example 4: Metal forming

• Explicit analysis of channel forming process (quarter model)

Initially flat geometry gets deformed: drawn over 90° radius Free spinning drill rotations get involved in bending mode

Example 4: Metal forming

• Observation of nodal rotations (0...3.14) as vector plot:

Example 5: Spot weld connections

- Punctual connection between metal parts, e.g. spot welds or rivets, are often modeled by SPR constraints, single beams or solid elements fastened to shell components
- Local forces and moments acting on shell elements, where nodal rotations can become important: often these areas are geometrically flat at the beginning, but get highly deformed during crash loading
- In fact, idea for DRCM option in explicit came from SPR investigations:

Example 5: Spot weld connections

Example 5: Spot weld connections

Time = 15.7 Contours of Effective Plastic Strain max IP. value min=0, at elem# 1 max=0.358049, at elem# 200985

Time = 16.2 Contours of Effective Plastic Strain max IP. value min=0, at elem# 1 max=0.241818, at elem# 201001

- Screw modeled as beam type 9 with heads modeled as shells
- Pre-stressed with *INITIAL_AXIAL_FORCE_BEAM
- Upper bolt head is rotated by external load
- Lower bolt head rotates only with drilling stiffness activated

- Attempt to provide more insight into topic of **shell's drilling d.o.f.**
- Constraint method necessary in **implicit**: default setting in LS-DYNA
- Now optional for explicit analyses since R7.0.0: part set can be defined (CPU cost can increase by up to 20%)
- Might be helpful in some situations as shown in the examples, but more investigations necessary, please try in your applications!
- Default value for DRCPRM seems to be a good choice, but always bear in mind that this is a non-physical additional stiffness that might have an influence on the structural response